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Problem 1 . . . rotating a force 3 points
There are two forces F1 = 2.0 N and F2 = 1.0 N acting on a point of mass. What is the angle
between them if their resultant is the same magnitude as the larger of the forces, F = F1?

May the Force be with you!

It is essential to map out the situation well.

~F2

~F1
~F

α

α

β

Figure 1: Force decomposition.

From the picture, we can see that we get two triangles with known side lengths. The angle
we are looking for is α+ β. Since the triangles are isosceles, α+ 2β = 180◦, so we just need to
calculate α because α+ β = α/2 + 90◦.

We calculate the angle α using the law of cosines as

cosα = F 2
1 + F 2 − F 2

2

2F1F
= 7

8 .

From that, we get
α/2 + 90◦ = arccos

(7
8

)
/2 + 90◦ = 104.5◦ .

Elena Chochoľaková
elena.chocholakova@fykos.org

Problem 2 . . . five-second rule 3 points
You may have heard that if you drop your food on the floor but pick it up within five seconds,
it will not be heavily contaminated with bacteria. Let us consider the following case. You
drop a circular snack with a diameter of 4 cm on the ground. The bacteria from the floor
will immediately stick to it. However, according to the common rule, this should not matter.
Therefore, let us assume that most of the bacteria only arrive at the food from the vicinity of
the snack during those five seconds. What would their velocity have to be for their numbers to
multiply tenfold on a snack in five seconds? The surface density of bacteria on the ground is
homogeneous. Jarda always blows off the fallen food so that he can eat with a peace in mind.

Let us assume that bacteria are a smart spieces, and as soon as the food falls on the ground,
they instantly start moving towards it. Within five seconds, the bacteria can reach the snack
from a distance vt+ r, where v is their speed, t = 5 s and r = 2 cm is the radius of the snack.
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In the beginning, n1 = σπd2/4 of bacteria is stuck on the snack, where d is the diameter of
the snack and σ is the surface density of bacteria on the floor, which is considered constant in
the surroundings of the fallen food. To increase the number of bacteria tenfold, the area of the
circle must increase by a factor of ten, which corresponds to the radius

R =
√

10r = vt+ r ,

from where the required bacteria speed is

v = R− r

t
=
(√

10 − 1
) d

2t = 8.6 mm·s−1 ,

which is unrealistically high compared to their usual speed, which is at most in the order of
tens of micrometers per second. Moreover, we must point out that the five-second rule has
never been experimentally proven.

Jaroslav Herman
jardah@fykos.org

Problem 3 . . . game of tag 3 points
Two cars are driving on a road parallel to each other in the same direction. The trajectories
of the cars are ξ = 1.5 m apart. Nicolas is d = 3 m away from the trajectory of the first car,
which is moving at v1 = 55 km·h−1. What is the velocity of the second car if it always stays
hidden behind the first car from Nicolas’s point of view? We approximate the cars as point
masses. Nicolas waited for far too long at the bus stop.

We will solve this problem using the geometry in the figure.

d

ξ + d

v2

v1

ϕ

N

A

B

Figure 2: Sketch of the situation.

In the figure, instead of using the length of the sides, we have used vectors to represent
the change in position of the point masses compared to the origin. We have set the origin
at the point where Nicolas is standing, and we will use symmetry only for the case where
both cars were directly in front of Nicolas at time t0 and they have moved over the distance
s = v · (t1 − t0), at t1 to points A and B.
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Consequently, we can notice that the triangles are similar based on the AA (Angle-Angle)
theorem about the similarity of triangles. The similarity of the triangles is due to the angle φ and
the right angle to the x-axis. The similarity of triangles means that the ratios of the hypotenuses
are the same,1 and thus we have

v1 · (t1 − t0)
d

= v2 · (t1 − t0)
d+ ξ

v2 = d+ ξ

d
v1 .

After substituting the values v1 = 55 km·h−1, ξ = 1.5 m, d = 3 m, we got the value of v2
.=

.= 83 km·h−1.
Nicolas Gavorník

nicolas.gavornik@fykos.org

Problem 4 . . . changing the transmission lines 3 points
We have a transmission line with high voltage U0 = 110 kV, and we would like to increase it to
extra-high voltage U1 = 400 kV. Assuming the resistance of the line is constant, how much will
the power losses on the line change? We are interested in the power loss ratio P1/P0.

Karel thought about changing the transmission lines.

We know that Ohm’s law for a circuit or part of it says U = RI. Moreover, we can calculate
the electric power P as P = UI. If we modify the formula by substituting the current from
Ohm’s law, we get

P = U2

R
.

So far, we have written the equation in general. Now, let us add the indices 0 and 1. Since the
resistance remains constant, we will leave it without indices. Putting the indexed relations into
the ratio, we easily get the result

P1

P0
=

U2
1

R
U2

0

R

= U2
1

U2
0

.= 13.2 .

Losses increase to 13.2 times the original value. In reality, the losses would probably in-
crease more because with more power dissipation, the conductor temperature would stabilize
at a higher temperature at which the conductor would have more resistance.

Karel Kolář
karel@fykos.org

1This stems from the fact that we can express the ratio of the hypotenuses in both triangles using the
trigonometric function tangent.

4

mailto:nicolas.gavornik@fykos.org
mailto:karel@fykos.org


Physics Brawl Online 2023 13th year November 22, 2023

Problem 5 . . . swimming problem 3 points
Verča would like to go swimming, but she dislikes going into the water without eating. She has
an average density of 945 kg·m−3 when she is hungry, and it is hard for her to dive. How many
kilograms of food does Verča need to eat to have an average density of at least 980 kg·m−3?
Assume that she does not change her volume when she eats. The length of the pool is 30 m
and its depth is 3.1 m. Verča’s weight before the meal is 47 kg.

Verča sometimes feels very empty inside.
First, we express the volume of Verča V . To do this, we use the information that before eating,
her average density is ρ0 and her mass is m0

V = m0

ρ0
.

Her volume does not change, while her average density must increase, hence
m0

ρ0
= m0 + ∆m

ρ1
.

After simple algebraic manipulation, we get

∆m = m0

(
ρ1

ρ0
− 1
)

= 1.7 kg .

Thus, Verča has to eat 1.7 kg of food. The parameters of the pool were not needed to solve the
problem.

Juraj Jánošík
juraj.janosik@fykos.org

Problem 6 . . . slide 3 points
The management of the Dormitories and Refectories decided to spend money meaningfully, so
they built a slide from the roof of the ”building A” of the 17th November dormitories directly
to the door of the MFF’s Impakt pavilion. The two buildings are 430 m apart as the crow flies,
and their height difference is 59 m. What is the coefficient of friction of the slide if a student
weighing 60 kg has thrown himself down it with a velocity v0 = 8.5 m·s−1 and just stops at the
end of it? Assume that the slide is an inclined plane. Eliška was late for a lecture.
For the resultant force acting on the student on the slide applies F = F∥ − Ft, where F∥ is the
force that accelerates the student down the slide and is parallel to the plane of the slide, and
conversely Ft is the frictional force that acts against the force F∥. Moreover, the resultant force
is constant, and thus, the acceleration must also be constant.

The student is also subject to a component of the gravitational force F⊥ in a direction
perpendicular to the slide surface, which is compensated by the reaction of the slide R (also
perpendicular to its plane). The forces F⊥ and F∥ are components of the gravitational force
Fg. There is an angle α between Fg and F∥, which also corresponds to the angle of inclination
of the slide, and we calculate it as α = arctan(59 m/(430 m)).

Because the student started running, he began to slip at v0. He stopped with v1 = 0 ms−1

at the end of the slide. For the acceleration, we have the relation

a = v1 − v0

t
= −v0

t
.
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The distance of uniformly accelerated motion is the same as that of uniformly decelerated
motion, allowing us to calculate it as

s = 1
2at

2 = 1
2v0t ,

and if we express the time, we get
t = 2s

v0
.

The distance s can be found from the knowledge of the horizontal and vertical dimensions of
the slide as s = l/ cosα, where l = 430 m is the distance from the dormitories to the CUNI
MFF’s Impakt building.

After substituting in the equation for acceleration, we get

a = −v0
2s
v0

= −v2
0

2s .

We obtain F⊥ = Fg cosα for the normal force, and Ft = fF⊥ = fFg cosα for the friction force.
Finally, we use F∥ = Fg sinα and F = ma. We get

F = F∥ − Ft ,

ma = mg sinα− fmg cosα .

After some manipulation (we can notice that mass is irrelevant), we get

f = v2

2gl + tanα ,

and after inserting the numeric values, we obtain f = 0.15. Such a low coefficient is the result
of the fact that the slope of the slide is very small. Next time, the Dormitories and Refectories
management might choose a brachistochrone-shaped slide.

Eliška Malá
eliska.mala@fykos.org

Problem 7 . . . Jarda’s problems 3 points
When selecting problems for Physics Brawl Online, Jirka calculated that 20 % of the available
problem assignments comes from Jarda. Yet, Jarda is the author of an incredible third of all
the problems selected for the competition. Let us assume that FYKOS organizers do read the
problem proposals when selecting them for the competition. How much more likely is it that
the organizers will select a problem if the author is Jarda than if the proposal comes from
another (average) organizer?

Jirka’s original version of the problem did not pass the political censorship.

There are several ways of solving the problem. The first is by reasoning. Let’s denote the total
number of proposed problems by N and the number of tasks selected by n. We know that
Jarda has proposed 0.2 · N problems and n

3 were selected. We are interested in the quality of
the tasks Jarda proposes, i.e., the ratio between the number of selected tasks and the number
of tasks he proposed; which is equal to n/(3 · 0.2 ·N).

6

mailto:eliska.mala@fykos.org


Physics Brawl Online 2023 13th year November 22, 2023

We now compare this ratio with the ratio for any other organizer. The other organizers
proposed 0.8 ·N problems, from which a total of 2n

3 were selected. Then the ratio is
n
3

0.2 ·N :
2n
3

0.8 ·N =
1
3
2
3

· 0.8
0.2 = 2

Thus, we discovered that Jarda’s problems are approximately twice as successful as those of
the other organizers.

Alternatively, we could solve the problem using conditional probability. Our goal is to
calculate the probability that the problem is chosen given that it comes from Jarda (we will
denote it by P (chosen | Jarda); the symbol | denotes “under the condition”), and compare it
with the probability of being selected, given that it comes from any other organizer.

For conditional probability

P (selected, | Jarda) = P (selected ∩ Jarda)
P (Jarda) ,

where the probability that the selected problem is Jarda’s, i.e., P (selected ∩ Jarda), is given
again via conditional probability, this time using the probability that Jarda is the author of the
selected task – so P (Jarda|selected). We know that this probability is equal to 1/3.

In total, we have

P (selected | Jarda) = P (Jarda | selected) · P (selected)
P (Jarda) ,

while the probability that the task will be selected is unknown. Similarly, for any other organizer
(denoted as “other”) we have

P (selected | other) = P (other | selected) · P (selected)
P (other) .

Now, we want to find out how much more likely Jarda’s problems are to be selected, so we are
interested in the proportion of conditional probabilities expressed. We get

P (selected | Jarda)
P (selected | other) = P (Jarda, | selected)

P (other | selected) · P (other)
P (Jarda) =

1
3
2
3

· 0.8
0.2 = 2 .

Jiří Kohl
jiri.kohl@fykos.org

Problem 8 . . . irresistibly attractive 4 points
Jindra can’t find a girlfriend, so he orders a female-attracting device from a dubious online
store. He received a pocket black hole. At a distance of 5 m, the black hole exerts gravitational
acceleration of 9.81 m·s−2 on all bodies (including girls). Calculate the Schwarzschild radius of
this black hole. Jindra thought about complaining, but the black hole swallowed him.

The well-known relation for the Schwarzschild radius of a black hole is

RS = 2GM
c2 , (1)
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where G is the gravitational constant, M is the mass of the black hole, and c is the speed of
light. We assume the Schwarzschild radius of this black hole to be orders of magnitude smaller
than 5 m. Therefore at a distance of r = 5 m, we can use the relation from classical physics

a = GM

r2 . (2)

where a = 9.81 m·s−2 is the gravitational acceleration. We express the mass M from the
equation (1) and plug it into the equation (2)

a = RSc
2

2r2 .

Now we express the Schwarzschild radius RS and plug in the numbers

RS = 2ar2

c2
.= 5.5 · 10−15 m .

The pocket black hole has a Schwarzschild radius RS
.= 5.5 · 10−15 m, so our initial assumption

of a negligible black hole radius was confirmed. Our usage of the classical physics calculation
for gravitational acceleration was justified.

Jindřich Jelínek
jjelinek@fykos.org

Problem 9 . . . flying droplets 4 points
Rotating around a horizontal axis is a wheel with an outer diameter of d = 65.8 cm upon which
it is raining. Water droplets collide inelastically with the wheel’s surface, but subsequently they
can detach from it. What is the minimum angular rotation speed for water droplets to depart
from the entire upper half of the wheel’s perimeter?

Jindra rode his bike through the puddles.

Let’s move into a system associated with the rotating wheel. Water droplets experience a
gravitational acceleration g = 9.81 m·s−2 downward and a centrifugal acceleration ω2r outward
from the axis of rotation, where r = 32.9 cm is the radius of the wheel, and ω is the angular
velocity of rotation.

Water will depart from the wheel if the centrifugal force overcomes the radial component
of the gravitational acceleration. We will measure the angle α from the vertical. The radial
component of the gravitational acceleration is

gr = g cosα,

where a positive sign indicates the direction inward towards the axis. A droplet located at
position α on the wheel will depart if

g cosα < ω2r,

ω2 >
g cosα
r

.

For this inequality to hold for all angles α from 0 to 2π it must be the case that

ω >

√
g

r
.
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After substituting the given values, the result is ω > 5.46 rad·s−1. The minimum angular
rotation speed of the wheel for droplets to depart from the entire circumference is 5.46 rad·s−1.

Jindřich Jelínek
jjelinek@fykos.org

Problem 10 . . . stealing with a spring 4 points
We attach a spring with a stiffness k = 5.2 N·m−1 and a relaxed length l0 = 15 cm to a body
with mass m = 120 g. We then start pulling at its other end at a constant speed v = 65 cm·s−1.
To what maximum length does the spring stretch? The motion takes place on a smooth
horizontal plane. Jarda would like to become a pickpocket.

Let’s analyze the situation in the reference system of the hand. In this system, the body initially
attains speed v, resulting in kinetic energy mv2/2. That is all transformed into elastic potential
energy kx2/2 when the spring is the most stretched. This provides us with its maximum length

l = l0 + v

√
m

k

.= 25 cm .

Jaroslav Herman
jardah@fykos.org

Problem 11 . . . radiocarbon dating 5 points
Zuzka went to Abusir for archaeological excavations. In the tomb of an ancient Egyptian
dignitary, she found a sample of wood, which she took to analyze on a mass spectrometer. The
ratio of carbon isotopes in the sample was measured as p14C/12C = 9.22·10−13. In what year was
the dignitary buried? Using the Gregorian calendar, write the years BCE with a minus sign.
The half-life of 14C is T = 5 730 yr, and the ratio of isotopes in the atmosphere is historically
constant p0 = 1.25 · 10−12. Assume that the tree was cut down shortly before the dignitary’s
burial. Jindra came up with the origin of the problem only after Terka pointed it out to him.

In the upper atmosphere, radioactive carbon atoms are naturally formed from nitrogen 14N by
exposure to cosmic rays. Through photosynthesis, the radioactive carbon isotope is incorpo-
rated into plant cells and through the food chain into the bodies of animals. This fact establishes
the same ratio p0 of carbon isotopes 14C/12C in living organisms and the atmosphere.

When a living organism dies (e.g., when a tree is cut down), its carbon exchange with the
environment stops. Thus, there is no replenishment of the decaying isotope 14C, and the ratio
of 14C/12C decreases exponentially with time, with a half-life of T = 5 730 yr. We calculate the
age of the tomb t from the equation

p14C/12C

p0
= 2− t

T ,

t = −T log2

(
p14C/12C

p0

)
,

t = 2 516 yr .
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Subtracting the age of the wood from the current year of 2023, we get a burial year of 493 BCE,
which we round and write in the solution as −490.

Jindřich Jelínek
jjelinek@fykos.org

Problem 12 . . . curious cyclist 4 points
Kuba bought a new bicycle and wanted to find out the size of the rolling resistance coefficient ξ
of his wheels. He noticed that the bike goes downhill on its own if the plane of the slope
makes an angle with the horizontal greater than α = 0.5 ◦. The diameter of the bicycle wheels
is d = 67 cm. Can you help Kuba? Kuba likes cycling.

If Kuba goes down a slope that has a deviation from the horizontal direction equal to α, the
force in the direction of motion of the cyclist F⃗1 and the rolling resistance force F⃗v will be in
equilibrium. Thus, the bicycle will move in a uniform linear motion and

F1 = Fv = Fn
ξ

d/2 .

The figure shows that F1 = FG sin(α) and Fn = FG cos(α), so

FG sin(α) = FG cos(α) ξ

d/2 .

After expressing ξ and substituting, we get the result

ξ = d

2 tan(α) .= 2.9 mm.

α

~FG

~Fn

~F1

~Fv

α

Figure 3: Decomposition of forces.

Jakub Smolík
jakub.smolik@fykos.org
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Problem 13 . . . carrying a box 5 points
As Lego carried the box, he was pondering about force he was applying to it. The box has
a mass m = 7.5 kg and is shaped like a rectangular cuboid. Lego holds it by pushing on two
opposite (vertical) sides, and the coefficient of friction between the sides and Lego’s hands
is f = 0.45. What is the magnitude of the force exerted by one of Lego’s hands on the box?

Lego was carrying a lot of things at the camp

The hands are pushing on the box from opposite sides, so they both have to push with the
same normal force, let’s call it FN. Then the friction force between each of the hands and the
box is Ft = fFN. A gravity Fg = mg acts on the box as well. In order for Lego to carry the
box, the frictional forces between the box and the hands must compensate for this force. Thus

2Ft = Fg

2fFN = mg

FN = mg

2f .

One might expect this to be the result, but it is not! The point is that the frictional force
between the box and the hand is also a force that the hand exerts on the box. So each hand
exerts forces FN and Ft on the box, and these forces are perpendicular to each other, so if we
want to know the magnitude of the total force exerted by the hand on the box, we get it as

|F | =
√
F 2

N + F 2
t = FN

√
1 + f2 = mg

2f
√

1 + f2 = 90 N .

Šimon Pajger
legolas@fykos.org

Problem 14 . . . divider No.1 4 points
Petr needed a 3 V voltage source, but he only had a 12 V source and resistors. So he decided
to build a voltage divider from the schematic 4. What value of R did Peter have to choose to
get 3 V at V+? I wanted to reminisce about electrical engineering.

R2 = 10 kΩ R1 = R

R4 = R R3 = R

+12 V

V+

GND

Figure 4: Circuit diagram
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The problem’s name reveals that we need a voltage divider (sometimes called a potential di-
vider). It is a device consisting of two resistors connected in series, where we use the voltage
on the second resistor (in the direction of the current) as a source. The formula for the voltage
of an unloaded voltage divider on the second resistor in series is

UR2 = Uin
R2

R1 +R2
,

where Uin is the voltage across the series circuit and Uout is the voltage across the second
resistor. For the loaded divider, we have

UR2 = Uin
R2RL

R1R2 +R1RL +R2RL
,

where RL is the load resistance connected in parallel to R2. First, let us consider that there
are two resistive dividers, where the second one uses the output voltage of the first divider as
its input voltage. However, the first divider is loaded by the second, and the schematic shows
that the load resistance is R3 +R4 = 2R. Let us note that both resistances are the same in the
second divider, and the previous formula for the unloaded divider shows that its output voltage
will always be half of its input voltage. Thus, we only need to solve the circuit for the output
voltage of the first divider. Then we apply the formula for the voltage of the loaded resistive
divider, and we get

Uout = Uin
R2 · 2R

R2 ·R+ 2R2 +R2 · 2R
1
2 ,

from this, we construct an equation for R

R = R2Uin − 3R2Uout

2Uout
.

After inserting the values from the assignment, we get

R = 5 000 Ω .

Petr Kahan
petr.kahan@fykos.org

Problem 15 . . . steel sphere floats 4 points
Karel found a steel sheet with a thickness of ∆r = 0.84 mm and was thinking about what to do
with it. Since Karel likes to experiment, he made a hollow sphere of such a radius that when
placed in the water, one half was above the surface and one below. Consider that the thickness
of the sphere is just ∆r and that the density of the steel is ρ′ = 7 840 kg·m−3. Find the outer
radius of this sphere. Karel was thinking on a boat.

Let m be the sphere’s mass, and ρw the density of water. Half of the volume of the sphere is
immersed in water. In equilibrium, the buoyant force must be equal to the gravitational force,
so we get the equation

mg = V

2 ρwg ,

from which, after canceling g, we get
m

V
= ρw

2 .
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We express the sphere’s density as ρ = m
V

, where V is the total volume of the sphere and m
is the mass of the sheet from which we made it. We determine the mass of the sheet by its
density and the volume formed by the space between two spheres. The volume of the sheet will
therefore be V ′ = 4

3π
(
r3 − (r − ∆r)3), where r is the radius of the sphere. Substituting into

the equation and rearranging, we get

ρ = m

V
=
ρ′ (r3 − (r − ∆r)3)

r3 ,

while the weight of the air inside the sphere is equal to the buoyant force of the air acting on
the part of the sphere above the water.

Substituting into the equation for the equality of forces, we get the equation of the third
degree:

0 = ρ′ (r3 − (r − ∆r)3)− ρw

2 r3 ,

which we solve numerically. The solutions will give one real root and two complex. The real
root is r = 0.0387 m = 3.87 cm, which is the sought radius.

Juraj Jánošík
juraj.janosik@fykos.org

Problem 16 . . . modified solar system 5 points
Suppose the Sun had an effective temperature T2 = 8 000 K. By how many percent would the
period of Jupiter’s orbit have to be extended for the same amount of power to fall on it as it
does now? Danka was trying hard to come up with an interesting problem.

According to the Stefan-Boltzmann law, the heat output of a star (an absolute black body) is

L = S⊙σT
4 ,

where S⊙ is the surface area of the star, T is its temperature, and σ is the Stefan-Boltzmann
constant.

The Sun radiates evenly throughout the space. The planet captures a fraction of this energy
that is proportional to the cross-sectional area of the planet. So we want the following to hold

πr2
J
L1

4πd2
1

= πr2
J
L2

4πd2
2
,

where rJ is the radius of Jupiter and d1 and d2 are the distances from the Sun for surface
temperatures T1 and T2, respectively. We substitute the heat output L from the first equation
and get

d2 = d1

(
T2

T1

)2
.

Kepler’s third law binds the orbital periods of the planets around the Sun

t21
d3

1
= t22
d3

2
,
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from where we can already find the prolongation we are looking for as

p = t2 − t1
t1

=
((

d2

d1

) 3
2

− 1
)

=
((

T2

T1

)3
− 1
)

=

(((
4πR2

⊙σ

L1

) 1
4

T2

)3

− 1

)
= 166 % .

Daniela Dupkalová
daniela@fykos.org
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Problem 17 . . . pulleys with elastic rope 4 points

m m

Lego likes tasks with pulleys. But this time he wanted
to come up with a problem that would model the fact
that the rope has some elasticity. He decided to do
this by splitting a perfectly stiff, weightless rope in the
middle and then joining it with a weightless spring with
stiffness k = 78 N·m−1. He then placed the modified
rope on two fixed pulleys placed at the same height
and hung a weight with mass m = 9.0 kg on each end.
He then held both the weights with just enough force
so that the tension in the rope was T = 12 N. What is
the acceleration with which the weights will move if they are released at the same time?

The problem came up to Lego’s mind, when he had a lecture on pulleys at camp.
A quick way to solve this is to consider that a gravitational force mg will be applied to the
block in the downward direction and a force from the rope in the upward direction. At the
moment of letting go, the spring has not yet had time to stretch from the state it was in when
we held the blocks. Thus, the force T will be applied to the rope, and hence the tension in the
intangible rope must still be T . So the resulting force mg − T is acting on both blocks and
hence they will move with acceleration a = g − T/m

.= 8.5 m·s−2.
But we will also describe a more complicated way (since it came to our mind earlier). The

whole situation is symmetrical with respect to the centre of the spring, so it will not move. So
we can imagine that this point is perfectly fixed to some wall. Thus we get a situation where a
block of mass m oscillates on a half spring. That is effectively on a spring of stiffness 2k. The
angular frequency of the oscillation will be ω =

√
2k/m.

The equilibrium position will be when this half of the spring is extended by lr = mg/2k
compared to its rest length. We release the blocks when there is a tension T in the rope, then
the spring half must be extended by lm = T/2k. Since we are releasing the weight from rest, it
will be at its maximum at the moment of release, and the magnitude of the oscillatory motion
amplitude will therefore be la = lr − lm = (mg − T ) /2k. At the same time, in addition to the
position, there will be an acceleration in the amplitude, the magnitude of which will therefore
be

a = laω
2 = mg − T

2k
2k
m

= g − T

m

.= 8.5 m·s−2 .

Šimon Pajger
legolas@fykos.org

Problem 18 . . . falling clothes horse 4 points
l

d

m

Matěj has a clothes horse with a width of l = 180 cm on which he
spreads his clothes evenly after washing. On the left edge of the
dryer, he places a weight of m = 3 kg. How long after we hang up
the clothes will the dryer tip over if its leg span is d = 60 cm? The
mass of the wet clothes is M0 = 6 kg; this will decrease to M1 =
= 2 kg when the clothes are completely dry. The weight of the dryer
itself is 2 kg. For simplicity, consider that the water evaporates at
a constant rate and the clothes dry up in one day. Matěj cannot dry his clothes.
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Let us denote the mass of the dryer by Ms. We can calculate the position of the center of gravity
of the entire system as the weighted average of the positions of the centers of the individual
bodies. Thus, at the beginning of the drying process, the total center of gravity is located at

x0 =
m l

2
m+M0 +Ms

= 24.5 cm

from the center of the dryer. When the laundry dries up, it moves to

x1 =
m l

2
m+M1 +Ms

= 38.6 cm ,

which is more than xmax = 30 cm, and therefore the dryer must tip over at some point. From
the relation above, we express the mass of the laundry and substitute xmax for the position of
the center of gravity to obtain the minimum mass of the laundry that will not yet allow the
clothes horse to tip over

Mmin = ml

2xmax
−m−Ms = 4 kg .

If the laundry dries at a constant rate, it will dry to this critical mass in Mmin−M1
M0−M1

= 1/2 of
a day, or 12 hours.

Matěj Mezera
m.mezera@fykos.org

Problem 19 . . . acoustic speedometer 5 points
When the car is stationary, 80 raindrops per second hit its windshield. What velocity is it
traveling at if the current frequency of impacts is 230 s−1? The windshield has an area S and is
inclined at an angle of 33 ◦ with respect to the ground. Raindrops fall vertically to the ground
at a velocity 4.5 m·s−1. Jarda was afraid of a speeding fine.

Let’s find the number of raindrops that fall on the glass in one second. Let us denote the
velocity at which they fall as v and their volumetric density in the air as n. Then, f1 raindrops
fall on the stationary glass during one second

f1 = nvS cosα .

However, the situation is a bit more complicated when the car is moving with velocity u.
Now, the volume collected by the front windshield of the car per unit time is equal to

Q = uS sinα+ vS cosα .

We see that an additional term has been introduced here. From the difference in frequencies,
we obtain

f2 − f1 = nuS sinα ,
From there, we can easily express the final velocity of the car

u = f2 − f1

nS sinα = v
f2 − f1

f1 tanα = 47 km·h−1 .

Jaroslav Herman
jardah@fykos.org
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Problem 20 . . . the Synchrotron in Grenoble 5 points
At the ESRF synchrotron in Grenoble, electrons with an energy of 6.03 GeV orbit along the
track with a circumference of 844.4 m, generating a current of 35.8 mA. How many electrons
are there in the entire synchrotron at one moment?

Jarda participated in a diffraction experiment.

Since the rest mass of an electron is E0 = 511 keV, it is negligible compared to their total
energy of E = 6.03 GeV, so they move strongly relativistically. We can calculate their speed if
we start from the equation:

E = E0√
1 −

(
v
c

)2
,

where v is their speed and c is the speed of light. From this:

v

c
=

√
1 −

(
E0

E

)2
= 0.999 999 996 .

Furthermore, due to the precision of quantities in the task and the precision of the required
result, we can solve the problem with approximation v = c.

The frequency of electron circulation in the synchrotron is f = c/l, where l = 844.4 m is its
circumference. The current produced by a single electron is Ie = ef , where e is the elementary
charge.

The total number of electrons is then:

N = I

Ie
= I

ef
= Il

ec
= 630 · 109 .

Jaroslav Herman
jardah@fykos.org

Problem 21 . . . maximal pétanque 6 points
Vojta played pétanque, but he was not good at it. Therefore, he got angry and threw the ball
he held in his hand as far away as he could. At what angle must it be thrown with velocity v =
= 11 m·s−1 to go as far as possible if the ball continues to roll after impact? When the ball hits
the ground, only the vertical component of the velocity is absorbed, the ball does not slip, and
the rolling resistance coefficient is c = 0.17. Assume that the ball falls on a nearby horizontal
plateau that is at the same height as was the ball when it left Vojta’s hand.

Vojta misunderstood the rules of pétanque.

We can determine the range from the known relation

dv = v2

g
sin 2α ,

where 0 ◦ < α < 90 ◦ denotes the angle at which we launched the ball, which we are looking
for. If all the vertical component of the velocity is absorbed, the kinetic energy of a sphere of
mass m immediately after impact will be

Ek = 1
2m (v cosα)2 ,
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against which the rolling resistance will do the work. Thus, the condition for the ball to stop
will be

Ek = dkmgc ⇒ dk = 1
2cg (v cosα)2 ,

and in total, the ball travels a distance

d = dk + dv = v2

g

( 1
2c cos2 α+ sin 2α

)
.

For this distance to be maximal, the following expression must be maximal
1
2c cos2 α+ sin 2α .

So let’s find the derivative with respect to α and set the result equal to zero

− 1
2c2 cosα sinα+ 2 cos 2α = 0 ⇒ tan 2α = 4c ,

from where we get the optimal angle as 17 ◦.
Note that if we informally put c = ∞, we get the well-known result 45 ◦ for the ball not

rolling.

Vojtěch David
vojtech.david@fykos.org

Problem 22 . . . taxidermy of a cylinder 5 points
Let’s have a homogeneous cylinder. Around its axis, we cut a smaller cylinder out of it. The
hollow and the smaller cylinder are then released down the inclined plane. What is the radius of
the smaller cylinder if it starts with 20 % more acceleration than the rest of the larger cylinder?
Provide the answer in multiples of the original radius.

Jarda wanted to state a problem without any number. It didn’t work out.

When moving on an inclined plane, the law of conservation of energy applies to a rolling body
of mass m in the form

mgh = 1
2mv

2 + 1
2Jω

2 , (3)

where g is the gravitational acceleration, h is the height by which the body has descended, v
is the velocity attained by its center, J is the moment of inertia with respect to the axis of
symmetry, and ω is the angular velocity of rotation. For a cylinder, J = 1

2mr
2 holds, where r

is its radius. If the body is not circular, ωr = v must hold.
On an inclined plane, we release two bodies of different mass and radius. For each of them,

we calculate its acceleration. We denote the mass of the original cylinder M , its radius R, the
mass of the small cylinder as m, and its radius as r.

For a small cylinder
1
2mv

2 + 1
2Jω

2 = 1
2mv

2 + 1
2

1
2mr

2ω2 = 1
2mv

2 + 1
4mv

2 = 3
4mv

2 . (4)

The law of conservation of energy is therefore in the form

mgh1 = 3
4mv

2
1 ⇒ a1 = 2

3g sinα ,
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where the index 1 denotes the change in height, velocity, and acceleration of the cylinder, and
α is the angle of inclination of the plane with respect to the horizontal direction. We came
to the acceleration by the complete time derivative of the law of conservation of energy, since
ḣ1 = v1 sinα and ˙v2

1/2 = a1v1, with v1 then reduced on both sides of the equation.
The mass of the large cylinder is M −m and its moment of inertia with respect to the axis

of symmetry is
1
2MR2 − 1

2mr
2 .

The right hand side of the equation 3 is thus

1
2 (M −m) v2 + 1

2

(1
2MR2 − 1

2mr
2
)
v2

R2 = 1
2 (M −m) v2 + 1

4
(
MR2 −mr2) v2

R2 . (5)

By the same process as above we find the acceleration of the rest of the cylinder as

(M −m) gh2 = 1
2 (M −m) v2

2 + 1
4
(
MR2 −mr2) v2

2

R2 ,

from which we get
a2 = M −m

(M −m) + 1
2

(
M −m r2

R2

)g sinα .

From the condition a1
a2

= K = 1, 2 we get the equation

3M − 2m−m
r2

R2 = 3KM − 3Km.

We express m and M in terms of r and R, the cylinder length h and the density ρ as m = πr2hρ
and M = πR2hρ. Substituting into the previous equation and after subtracting π, h and ρ we
get the biquadratic equation

r4 + (2 − 3K)R2r2 + 3 (K − 1)R4 = 0 ,

where the variable is r2. The solution to this equation is

r2 =
− (2 − 3K) ±

√
(2 − 3K)2 − 12 (K − 1)

2 R2 = −2 + 3K ± (4 − 3K)
2 R2 .

If we choose the + sign, we get r = R and independence on K, which makes no sense. So we
choose the − sign, which leads to

r =
√

3 (K − 1)R .

We see that it can never happen that the rest of the cylinder goes faster than the small cylinder.
But at the same time, the problem has no solution for K > 4

3 either, because then r > R comes
out. If r → R, the rest of the cylinder becomes a hoop and achieves an acceleration of 1

2g sinα.
After setting K = 1.2, we get the result we are looking for

r

R
=
√

3
5
.= 0.775 .

Jaroslav Herman
jardah@fykos.org

19

mailto:jardah@fykos.org


Physics Brawl Online 2023 13th year November 22, 2023

Problem 23 . . . rats on rats 4 points
Imagine a heap of rats, each of which has mass m. We arrange the rats in a 2D pyramid similar
to Pascal’s triangle. There will be one rat at the top, two rats below it, three in the next row,
and so on. We have a lot of them, infinitely many. Each rat distributes its weight and the weight
it carries to the rats below it. What is the total weight the legs of the rat on the far left must
carry? Express the result as a multiple of m. If it would be infinite, enter 0. Consider the rats
in a homogeneous gravitational field. Karel was thinkig about Jára (da) Cimrman

The main difficulty of the problem lies in the scope of the problem statement and in the
understanding of the question itself. There are several possible approaches. A practical option
is, for example, to make a spreadsheet in Excel and see what the values are close to; indeed,
after a few rows, they start to settle around 2m.

The alternative is to manually count the elements. The weight that the rat must bear in
each successive row is obtained by always taking half of the previous rat’s load and adding m,
which represents the weight of the rat itself (we must not forget this, as the assignment asks
for the total weight that the rat’s legs must bear). For simplicity, let’s consider only multiples
of m – if the rat in the n-th row on the left carries a weight of mn, we denote an = mn/m.
Let’s write

a1 = 1 , a2 = a1

2 + 1 = 3
2 , a3 = 7

4 , a4 = 15
8 , . . .

After a few more tries, it looks like we’re still getting closer to 2 – in this way, this approach is
similar to the previous one mentioned. For both, however, we don’t know for sure if the value
2 is accurate, but you’ll find that during the competition after entering it.

A better approach is to note what each member satisfies

an = 1 + an−1

2 = 1 + 1
2 + an−2

4 = 1 + 1
2 + 1

4 + an−3

8 = · · · =
n−1∑
i=0

1
2i
,

where in the notation on the right side we choose the summation index i from 0 to n − 1 so
that the sum corresponds to the actual situation. Now we can compute the limit as n → ∞,
respectively add up the infinite geometric series to get

lim
n→∞

an = lim
n→∞

n−1∑
i=0

1
2i

= 1
1 − 1

2
= 2 .

So we actually got the expected result of 2.
We will show one more, so far the most crafty method, that will also give us the correct

result. Assuming we know the result, let’s denote it x. If our sequence is indeed close to some
real number, then it must be true that in the next row, the result is practically the same; so
we construct the equation

x = 1 + x

2
x

2 = 1 x = 2 .

Yet again we get the result that the multiple of the weight m carried by the bottom left (or
bottom right) rat is 2. This approach is probably the fastest.

In all cases, the result is only valid for obedient rats that exert an even load on their mates
below them, they all stand in a homogeneous gravitational field, and there is an infinite number
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of them. However poor rats in the middle have to carry an infinite load. But the more rats, the
more hatred towards them, as the classic, Jára Cimrman, wished in his pedagogical rules.

Karel Kolář
karel@fykos.org

Problem 24 . . . postmodern art 5 points

h

a

m0

m

Lego wanted to create a sculpture. He therefore took a rectangular cuboid
with mass m0 = 18.5 kg, a square base with side length a = 60.0 cm and
height h = 185 cm, which he placed next to a solid wall (the sides of
the cuboid are parallel to it). He then inserted a slab between the block
(cuboid) and the wall so that it was held horizontally at height h only by
friction. The coefficients of friction between the slab and the block, and
the slab and the wall are f = 0.42. The coefficient of friction between the
cuboid and the ground is effectively infinite. Lego, nevertheless, wants to
put a weight on the middle of the slab. What is the largest sum of masses
of the weights and the slab that the block can hold? The slab and the cuboid are homogeneous.

Lego’s problems are evolving.

We are investigating when the block will not hold the slab anymore. We know that the friction
between the cuboid and the ground is effectively infinite so that the cuboid does not slip (we
can imagine a stopper behind the block that will not let it go any further). Thus, the forces
acting on the block can always be in equilibrium. What, however, can cause a block to fail to
hold the slab? It may be that the torques are not in equilibrium. It might seem that due to
the unlimited friction between the block and the ground, the slab can push on the block with
an arbitrary force. However, this is not true because the cuboid would topple over for some
magnitude of force. It cannot exert such forces on the slab, so for cases where such a force
would be needed to hold the slab, the slab would fall.

Thus, we are interested in the total sum of the torques of the forces acting on the block.
We will choose the back edge on the ground as the axis of rotation since this is the edge around
which the cuboid would start to overturn if the force exerted on it by the slab were too great.

What are all the forces acting on the block? It is gravity, the normal and frictional force
between it and the slab, and the normal and frictional force between it and the ground. We
will discuss these forces, and especially, their torque, in that order.

The block has mass m0, so the weight of the block is m0g. Since the block is homogeneous,
this force will act at its center, and hence, at a horizontal distance a/2 from the back edge.
The torque with which this force acts on the cuboid will, therefore, be

Mg = 1
2am0g .

Let’s examine the forces between the block and the slab. Let us denote the sum of the mass
of the slab and the weight as m. The slab is pushed upwards by frictional forces only (between
the slab, the wall, and the block). We can calculate the friction force as the friction coefficient f
(f is the same for both surfaces) multiplied by the normal force that pushes the two surfaces
together. Since the slab is not moving in the horizontal direction, the forces in that direction
are balanced. Thus, the normal force on one side of the slab must be as large as that on the
other. If we denote this force by FN, the frictional force on each side will be Ft = fFN. The
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sum of the frictional forces must compensate for the gravity of the slab and the weight, that
is, mg = 2Ft. From here, we can express the force pushing the block and the slab together
as FN = mg/(2f).

At what torques will these two forces act on the block? The slab will be pushing the block
down with the frictional force, and this torque will, therefore, act in the same direction as the
gravitational torque of the block itself. The horizontal distance of the center of this force from
the axis of rotation is a, so the torque from the frictional force is

Mt = aFt = 1
2amg .

The torque from the normal force between the slab and the block will rotate the block in the
opposite direction as the torque from the gravity and friction forces, so we assign the opposite
sign to it. This force is horizontal, so its torque vector will be the same as the vertical distance
of the origin and the axis of rotation, or h. Together, this torque will be

MN = −hFN = − 1
2f hmg .

It is important to consider the effect between the block and the ground. The friction acts on
the plane of the ground, which means that it will not exert any torque in the axis of rotation.
However, it is crucial to understand the impact of the normal force. Normally, this force is
distributed continuously over the entire contact area. In the absence of external forces, it can
be assumed that the normal force will act uniformly at the center of the base.

When a force is applied to a block, its weight distribution changes. To better understand
this concept, you can try standing upright while having a friend push you from the front. Even
if you do not fall over, you’ll notice that your weight shifts towards your heels. The same thing
happens to the normal force distribution when we apply a force to the block.

Just as the frictional force is enough to keep the object from sliding, this normal force
distribution is enough to keep the object from tipping over, unless the applied torque is too
great.

The torque from the normal force from the ground will rotate the block in the same direction
as the torque from the normal force from the slab. Thus, in the limit situation, when the normal
force between the block and the slab is the maximum possible, the normal force between the
ground and the block will act entirely in the axis of rotation (because it has zero torque there).
If it did not operate entirely there and therefore had a non-zero torque, this would mean that it
is possible to increase the force between the block and the slab, because a small enough increase
would only tilt the block more backward. That is, when we are interested in the maximum
possible weight of the slab and the weight, the torques of the forces between the block and the
ground must be taken as zero in our chosen axis of rotation.

So, we get an identity that will hold in the limit case

Mg +Mt +MN = 0
1
2am0g + 1

2amg − 1
2f hmg = 0

m = m0
h

fa
− 1

= 2.92 kg .
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This is the maximum possible mass m that the block can support.

Šimon Pajger
legolas@fykos.org

Problem 25 . . . ice in a cube 5 points
We enclose ice with a mass of 15 g and temperature 0 ◦C under normal conditions in a hermet-
ically sealed cubic container with a volume 0.10 l. Afterwards, we start heating it. What will
be the pressure inside the cube when the temperature there reaches 120 ◦C?

Jarda wanted to trick the participants, but he tricked himself instead.

Firstly, we will attempt the calculation while considering water an ideal gas, even though we
might conclude that it was not the best idea.

The volume of air in the cube at the beginning is Vv = V − m/ρL = 83.6 cm3, where m =
= 15 g is the mass and ρL = 916.2 kg·m−3 the density of ice at 0 ◦C. Because it is air under
normal conditions, we can use the state equation to determine the amount of substance present
in the cube as

nv = pnVv

RTn
= 3.48 mmol ,

where pn and Tn are pressure and temperature under normal conditions.
At a temperature T = 120 ◦C, all the water will have evaporated. The chemical amount of

water is
nH2O = m

MH2O
= 833 mmol .

The chemical amount of water is thus much higher; therefore, we can neglect the partial pressure
of air. The total pressure will ultimately be

p =
nH2O

V
RT = 27 MPa .

That is a very high pressure. However, water boils at higher temperatures under increased
pressure. Therefore, not all the water will have evaporated even at 120 ◦C. Only a portion will
have. Water will exert a partial pressure, which is the pressure of saturated water vapor at
120 ◦C, as at this point, no more water will evaporate. Its value is approximately pw = 198.9 kPa.
It is possible to find this data on the internet, e.g., https://www.engineeringtoolbox.com/
water-vapor-saturation-pressure-d_599.html.

To this pressure must be added the partial pressure of the air inside the cube. The volume
of air is

Vv2 = V − Vw = V − m

ρ120 ◦C
= 84.1 cm3 .

In this calculation, we assumed that the mass of water that evaporated and is in the cube in
gaseous form is negligible compared to the mass still in the liquid state. We observed that
when all the water evaporates, its pressure is at least two orders of magnitude higher than the
pressure of saturated water vapor. Therefore, the amount of evaporated water will also be two
orders of magnitude lower than the mass of the remaining water. For this calculation, we used
the density of water ρ120 ◦C = 943 kg·m−3 from source https://www.engineeringtoolbox.com/
water-density-specific-weight-d_595.html.

23

mailto:legolas@fykos.org
https://www.engineeringtoolbox.com/water-vapor-saturation-pressure-d_599.html
https://www.engineeringtoolbox.com/water-vapor-saturation-pressure-d_599.html
https://www.engineeringtoolbox.com/water-density-specific-weight-d_595.html
https://www.engineeringtoolbox.com/water-density-specific-weight-d_595.html


Physics Brawl Online 2023 13th year November 22, 2023

For partial pressure of air

pv = nv
RT

Vv2
= pn

Vv

Vv2

T

Tn

.= 135 kPa .

The total pressure inside the cube is

ptot = pw + pv = 334 kPa .= 330 kPa .

Jaroslav Herman
jardah@fykos.org

Problem 26 . . . When will I be there? 7 points
Jarda rides in an elevator that ascends at a constant speed. Since he is getting impatient, he
is throwing his keys into the air. They always fly to the height of 62 cm. However, between
one ejection and the subsequent catching of the keys, the elevator begins to brake steadily, so
that the keys fly to a height of 72 cm and spend 0.15 s more time in the air. Determine the
acceleration with which the elevator slowed down.

Jarda is in the elevator and already looking forward to bed.

When the elevator is braking on the way up, the inertial force in the elevator is acting upwards,
so the acceleration of the keys will be smaller (we denote it as a). Since the height to which
the keys flew is greater than the original height, braking occurs as the keys ascend.

When the elevator was moving steadily, the keys always spent in the air

h = 1
2g
t2

4 ⇒ t = 2
√

2h
g

= 0.711 s .

We divide the time of the throw of the keys in the air when the elevator brakes into two – t1
is the time from the ejection when the elevator is not yet braking and t2 is the time the keys
spend in the air when the acceleration a is applied to them. Thus T = 2

√
2h/g + ∆t = t1 +

+ t2 = 0.861 s. Thus for the initial velocity, we get v0 =
√

2gh = 3.49 m·s−1.

Let’s denote the velocity that the keys had at the moment of change of acceleration as v1. Then

v1 =
√
v2

0 − 2gh1 ,

where h1 is the height at which they were at that moment. For time t1 we then have

t1 = v0 − v1

g
.

Time t2 is then composed of two parts – during the first part the keys were still flying up, and
during the second they were falling down. We can write it as

t2 = v1

a
+

√
2H
a
.
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Substituting into the equation for total time, we get

t1 + t2 = v0

g
+ v1

g − a

ag
+

√
2H
a

= T .

The last unknowns are v1 and the variable a, which we want to find. From the law of conserva-
tion of energy, we know the velocity of the keys at the moment of change of acceleration. This
is then converted entirely into a change in potential energy with the new acceleration in the
lift, so we have an equation

v2
0 = 2gh1 + 2a (H − h1) = 2 (g − a)h1 + 2aH ⇒ v2

0 − 2aH
2 (g − a) = h1 .

From here we substitute in the equation for v1, which is

v1 =
√
a

2gH − v2
0

g − a
.

Substituting this into the equation for the times, we have an equation in which the only unknown
is the acceleration. We have√

g − a

a
2g (H − h) + g

√
2H
a

= gT − v0 .

We could further modify the equation for a, but we will compute the value of a numerically. We
get a = 7.74 m·s−2. The elevator therefore decelerated with acceleration av = g−a .= 2.1 m·s−2.

Jaroslav Herman
jardah@fykos.org

Problem 27 . . . insidious horn 5 points
At the FYKOS camp, participants measured a car’s speed using the frequency shift of the
horn. However, they encountered a problem – the horn’s pitch changed between individual
repetitions. Lego, therefore, came up with the following modification of the experiment: we
measured the horn’s frequency when the car was approaching us as f1 = 437 Hz. Right after
that, the frequency f2 = 415 Hz was measured when the car passed us closely. Assuming that
neither the car’s speed nor the frequency emitted by the horn has changed, what speed was the
car traveling at? Lego really came up with the idea at the camp during the presentations.

The Doppler shift when the source approaches us is expressed by the relation

f1 = f0
vc

vc − v
,

where f1 is the frequency which we measure, f0 is the frequency emitted by the source (in our
case, the horn), vc = 343 m·s−1 is the speed of sound in the air, and v is the speed of the source
(in our case, the speed of the car).

When the source moves away from us, only the sign of the velocity changes, so the following
holds

f2 = f0
vc

vc + v
.
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We get a system of two equations for the unknowns f0 a v, where the task is to express v. We
can solve the system, for example, by dividing the second equation by the first

f2

f1
= vc − v

vc + v
.

We multiply both sides by the denominator on the right side, move all terms containing v to
one side, isolate v, and obtain the result as

v = vc

1 − f2
f1

1 + f2
f1

= 31.9 km·h−1 .

Šimon Pajger
legolas@fykos.org

Problem 28 . . . incorrect voltage 5 points
A testing water electrolyzer produces 1.43 g of hydrogen per hour. The device is powered
by direct current from the source connected by cables, each having a resistance of 3.1 mΩ.
Although the source exhibits an output voltage of 1.95 V, this value is not directly associated
with electrolysis. What voltage would be measured if we connected a voltmeter directly to the
electrolyzer? Jarda produces hydrogen.

Excluding the voltage necessary for water electrolysis, the source must supply voltage to over-
come the ohmic resistance of supply cables. When measuring the voltage using the four-probe
method, a lower value is obtained

Ue = U − 2RI ,

where I is the current passing through the entire device. The coefficient 2 must be included
because one cable goes from the source to the electrolyzer and the second goes the other way.
The amount of released hydrogen, according to Faraday’s law of electrolysis, is proportional to
the passing current

dm
dt =

MH2

NA

I

2e ,

where the coefficient 2 accounts for the fact that two electrons are needed for the formation
of every molecule H2. The molar mass of hydrogen is 2.016 g·mol−1. After obtaining I and
substituting it into the first equation, the voltage under which the electrolysis occurs is

Ue = U − 2R2eNA

MH2

dm
dt

.= 1.71 V .

Jaroslav Herman
jardah@fykos.org

26

mailto:legolas@fykos.org
mailto:jardah@fykos.org


Physics Brawl Online 2023 13th year November 22, 2023

Problem 29 . . . banded archerfish 6 points
Banded archerfish is a fish species that has found an original way to hunt for food. It approaches
the surface and spits out a stream of water to knock down unsuspecting insects nearby. The
insect falls into the water and has little time to escape. If the archerfish sees the insect sitting
at an angle 35 ◦ relative to surface normal, how far must the insect sit from it to be knocked
down? Consider that the fish can knock down insects at a maximum height of 3.0 m above the
surface. The fish splashed Jarda.

From the last condition in the statement, we get that the speed at which the archerfish can
spit water from its mouth is

v =
√

2gh ,

where h = 3.0 m.
Furthermore, we need to use a protective parabola, whose equation for spraying from zero

height is
y = − 1

4hx
2 + h .

At the point where this parabola intersects with the direction towards the insect is the
farthest position where the food can still be hit. Therefore, we need to determine this specific
direction. It might seem to be the given 35 ◦ from the task, but the archerfish’s eyes are
below the water surface, so it is necessary to account for the refraction of light at the water-air
interface. Using Snell’s law for water with a refractive index of n = 1.333, we obtain

β = arcsin(n sinα) = 50 ◦ .

The line y = x cotβ intersects with the protective parabola at points

0 = 1
4hx

2 + x cotβ − h ⇒ x1,2 = 2h− cosβ ± 1
sin β ,

where we are interested in the positive root of our solution. The total distance from the
archerfish can, therefore, be at most

d = x1

sin β = 2h1 − cosβ
sin2 β

= 2h 1
1 + cosβ

.= 3.6 m .

Jaroslav Herman
jardah@fykos.org

Problem 30 . . . digging up 6 points
Inside a hollow planet, a special life form has evolved. The inhabitants of this vacuum bubble
with a radius of r = 1 000 km decided to dig their way up to the planet’s surface. Their
scientists measured the density of the rock in several places and found that it decreases linearly
with distance from the center of the planet. At the surface of their bubble, they measured a
density of 9 000 kg·m−3 and 100 km further from the centre they measured 8 800 kg·m−3. This
gave them an estimate that their planet was unlikely to have a radius larger than 5 000 km.

While digging the tunnel to the planet’s surface, they decided to take a lunch break at a
distance R = 3 000 km from the center of the planet. But they encountered a strange difficulty
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– gravity. There’s zero gravitational acceleration inside their bubble, so they were surprised to
find something pulling them back down. Calculate the gravitational acceleration at the point
of their lunch break. Assume that all material at distance x from the center of the planet has
the same density. Kuba was reading The Wandering Earth.

We use Newton’s shell theorem, which states that the gravitational field strength inside a
spherical shell is zero. This is also the reason why there is zero gravitational acceleration inside
this hollow planet. At the same time, this means that we can ignore all the mass that is above
our explorers.

So we just need to determine how the mass in the sphere below the explorers acts gravita-
tionally on them. In the center of this sphere is a vacuum bubble. Here we will use Gauss’s
law. It says that a spherical surface acts gravitationally on external objects as if all its mass is
concentrated at its center. So we just need to determine the gravitational effect of a spherical
surface with radius x and integrate that from r to R.

We know that the density of the planet ρ is some linear function depending on x. So
it has the form ρ(x) = ax + b. From the measurements of scientists, we know that firstly
9 000 kg·m−3 = a · 1 000 · 103 m + b, and secondly 8 800 kg·m−3 = a · 1 100 · 103 m + b. After
solving this system of equations, we get the result a = −2 · 10−3 kg·m−4 a b = 11 000 kg·m−3.
Thus, we get

dg = G

R2 dM = G

R2 ρ(x) dV = G

R2 (ax+ b)4πx2 dx = 4πG
R2

(
ax3 + bx2) dx .

We integrate this result from r to R

g = 4πG
R2

∫ R

r

(
ax3 + bx2) dx = 4πG

R2

[
a

4x
4 + b

3x
3
]R

r
= πG

3R2

[
3ax4 + 4bx3]R

r
.

After some manipulations and substitution, we then get

g = πG
3R2

[
3a
(
R4 − r4)+ 4b

(
R3 − r3)] .= 5.15 m·s−2 .

Jakub Smolík
jakub.smolik@fykos.org

Problem 31 . . . echoooooooooooo 6 points
In the middle of a long tunnel with radius R = 15 m stands a point source of sound which emits
a short beep. At a distance D = 210 m, also in the middle of the tunnel, we hear its intensity
level as 60 dB. How long after we initially hear the beep do we stop hearing its echo if each
time it reflects off the wall its intensity decreases by 60 %? The lowest sound intensity that can
still be heard in the tunnel is 22 dB.

In his younger days, Jarda often visited caves of the Moravian Karst.

The reduction of the sound intensity level takes place in two ways – by reflection, and by
propagation in space, since the sound source is a point source. We express the sound intensity
level as

L = 10 log
(
I

I0

)
,
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where I is the sound intensity at a given location and I0 = 10−12 W·m−2 is the intensity of the
threshold of hearing.

A point source is characterized by the fact that we can neglect its dimensions with respect
to the distance from it. Assume that the source isotropically radiates some power P . The
intensity at distance r is thus

I = P

4πr2 .

Hence, the intensity decreases, not very surprisingly, with the square of the distance. We can
easily calculate the acoustic power of the source from the problem statement and use it in
further calculations.

We need to determine the number of reflections at which the sound intensity level will still
be greater than 20 dB, which corresponds to an intensity of 100I0. Sound is reflected off the
walls, so it travels a greater distance to the point where we hear it. Since the situation is
rotationally symmetric, we can only consider a 2D cross section. We mirror reflect the point
at which we listen around the wall, several times. We then connect each of these points with a
sound source and measure the distance. For the n-th reflected point, this will be

rn =
√

(2nR)2 +D2 .

We also note how many times the sound passes through the mirror walls, this represents the
number of reflections, which is n. We then multiply the sound intensity calculated from the
distance rn by a factor of 0.4n. We record the results in the table 1.

Table 1: Dependence of the sound intensity level on the number of reflections from the source.

n

1
rn

m
I

W·m−2
L

dB
0 210 1.0 · 10−6 60.0
1 212 3.9 · 10−7 55.9
2 218 1.5 · 10−7 51.7
3 228 5.4 · 10−8 47.3
4 242 1.9 · 10−8 42.9
5 258 6.8 · 10−9 38.3
6 277 2.4 · 10−9 33.7
7 297 8.2 · 10−10 29.1
8 319 2.8 · 10−10 24.5
9 342 9.9 · 10−11 19.9

We can see that after nine reflections the sound intensity level dropped below 22 dB. This
corresponds to a time delay

∆t = r8 − r0

c

.= 0.32 s .

Jaroslav Herman
jardah@fykos.org
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Problem 32 . . . maximal activity I 6 points
Jindra has N0 = 107 atoms of the isotope 211Bi. This isotope, with a half-life of TBi = 2.14 min,
transforms into the isotope 207Tl, which then, with a half-life of TTl = 4.77 min, transforms into
the stable isotope 207Pb. What is the maximal activity that the system can reach?

Jindra does not disdain any activity.

It might seem that to answer this question, we need to solve a system of differential equations
describing the decay series, but this is not true. The maximal activity in the system will be at
time t = 0, which we can also prove via simple reasoning.

The decay of a radioactive isotope can be described either by the half-life T1/2 or by the
decay constant λ. If there were N atoms of a given isotope in the system at time t = 0, then
at time t there will only be

N(t) = N · 2
− t

T1/2 = Ne−λt (6)
atoms of that isotope, as some of them have already decayed. The relationship between the
half-life and the decay constant is

λ = ln 2
T1/2

.

The activity R of a radioactive isotope (the number of decays per second) depends on the
number of atoms N in the system and the decay constant λ

R = λN .

In our system, there are two radioactive isotopes 211Bi and 207Tl. Let’s call the instantaneous
number of bismuth atoms NBi and the instantaneous number of thallium atoms NTl. The
activity depends on the instantaneous number of atoms of both isotopes as

R = λBiNBi + λTlNTl , (7)

where λBi and λTl are the decay constants of the given isotopes. Given that TBi < TTl, it
follows that λBi > λTl.

Now comes the key part of our reasoning. Because the decay constant of the bismuth isotope
is greater than that of the thallium isotope, with the same number of atoms of both isotopes,
the bismuth sample will exhibit higher activity. We start purely with bismuth atoms in the
amount N0 in our system. Over time, some of them decay into the thallium isotope. Further,
some thallium atoms decay into the stable isotope of lead 207Pb. If M atoms of bismuth have
decayed, then there are NBi = N0 −M atoms of bismuth and NTl ≤ M atoms of thallium in the
system. Looking again at equation (7), we see that some bismuth atoms have been replaced by
thallium atoms. As mentioned earlier, the thallium isotope has a lower activity than the same
amount of the bismuth isotope. But the number of bismuth atoms only decreases according to
equation (6), and there can never be more thallium atoms in the system than the number of
decayed bismuth atoms. Therefore, the maximal activity in the system occurred at time t = 0
and had a value of

Rmax = λBiN0 = 5.40 · 104 s−1 .

The maximal activity in our system had a value of 54.0 kBq.

Jindřich Jelínek
jjelinek@fykos.org
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Problem 33 . . . immersing 5 points
We have a negligibly thin hollow sphere and a hollow cube, both with volume V = 5 l and full
of air. What is the ratio of the work required to submerge them under water? The base of the
cube is parallel to the surface (we don’t rotate it during motion), both bodies are starting at the
surface, and we want to get them to a state where they are completely submerged and touching
the surface. As a result, sumbit a number greater than 1. Matěj was in the bathtub.

Solution via forces
To calculate the work, we will have to overcome the buoyant force – the gravitational force is
in this case negligible and compensated by the buoyant force of the air (relative to V ≫ 0). Its
magnitude is always proportional to the volume V of the submerged part of the body according
to Archimedes’ law as F = V ρvg, where ρv is the density of water and g is the gravitational
acceleration.

The work required to submerge the cube is calculated straightforwardly as

W□ =
∫ a

0
F dh =

∫ 3√
V

0
gρv

3√
V

2
h dh = 1

2gρv
3√
V

4
.

For a sphere, the situation is a little more complicated – the submerged part is a spherical cap,
and its volume is determined by the well-known relation

Vv = πh
2

3 (3r − h) ,

where h is the height of the cap and r = 3
√

3V/(4π) is the radius of the sphere. We can then
write

W⃝ =
∫ 2r

0
F dh =

∫ 2r

0
gρv
πh2

3 (3r − h) dh = gρv
4π
3 r4 = 3

√
3
4πgρv

3√
V

4
.

The work for the immersion of the sphere is therefore greater, and the ratio we are looking for
is obtained as

W⃝

W□
= 3

√
6
π
.= 1.24 .

Solution without forces and without integrals
For simplicity, we will neglect the weight of the air, but we will return to this simplification over
time. With this assumption, the work done in immersion is transfers only as the increase in
the potential energy of the water. Thus, our question becomes what is the ratio of the increase
in potential energy of water when we submerge a sphere versus when we submerge a cube.

The assignment does not say what the surface area is, so we will assume for simplicity that it
is infinitely large. In that case, by submerging the object below the surface, we move the water
that was previously in its place to the surface. The change in potential energy is ∆Ep = mg∆h,
where g is the gravitational constant and m = V ρ is the mass of the displaced water, which is
the same for both the cube and the sphere, so the ratio of the work done will be equal to ∆h.
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The ∆h is equal to the change of height of the center of gravity of the displaced water. As
we have already said, the water is lifted to the water surface, so the new position of the center
of gravity will be at the surface. Since the water is homogeneous and both the sphere and the
cube are symmetric objects, we can say that the original centers of gravity were located where
the centers of the submerged objects are after submergence. That is, for the sphere r below the
surface and for the cube a/2 below the surface. All this reasoning can be symbolically rewritten
as

W⃝

W□
= ∆Ep⃝

∆Ep□
= mg∆h⃝

mg∆h□
= r

a/2 ,

where r = 3
√

3V/(4π) is the radius of the sphere and a = 3√V is the side of the cube. By
utilizing these expressions and evaluating, we receive the result

W⃝

W□
=

3
√

3V/(4π)
3√V /2

= 3

√
6
π
.= 1.24 .

Finally, we return to the neglection of the weight of air, we can note that the decreases in the
potential energy of air will be in the same ratio, so in fact, neglecting air does not affect the
resulting ratio at all.

Vojtěch David
vojtech.david@fykos.org

Šimon Pajger
legolas@fykos.org

Problem 34 . . . frog on a water lily 6 points
Jarda spends so much time in the garden that he enjoys getting to know its inhabitants.
However, a frog sitting on a water lily in the garden pond always gets scared and jumps away.
If the water lily leaf has a mass of 43 g and the mass of the frog is 150 g, how far can it jump if
it jumps up to a distance of 2.1 m on solid ground? Assume that the water lily does not bend
and moves only in a horizontal direction and that it moves freely.

Jarda is woken up by frog croaking at home.

Consider that this frog is highly intelligent and jumps up from the ground at such an angle
that it can jump as far as possible. It is a well-known fact that this angle is 45 ◦ and that the
maximum distance that an object launched from the ground at speed v0 reaches is

L = v2
0

g
,

from which we can find the speed of the frog right after the jump as v0 =
√
gL.

Thus, with this speed, the frog is able to jump from a surface on which it is sitting. However,
when the frog jumps from the water lily, by the law of conservation of momentum, its speed
relative to the ground is smaller. Let the initial horizontal velocity of the frog in the reference
frame with the water lily be v0 cosα, where α is the angle at which the frog jumps. Then the
law of conservation of momentum has the form

Mvh = mvl ,
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where vh is the horizontal speed of the frog, M its mass and vl is the speed of the water lily
and m is its mass. In the water lily reference frame, the speed of the frog is v0 cosα = vl + vh,
from which

vh = v0 cosα
1 + M

m

.

So, at this speed, the frog is moving horizontally with respect to the water surface (with respect
to the ground). The time the frog spends in the air is

t = 2v0 sinα
g

,

so that it can reach a distance of

l = vht = v2
02 cosα sinα
g
(
1 + M

m

) .

We got an interesting result. The best angle for the frog to jump relative to the water lily in
its rest frame is again 45 ◦. The maximum distance the frog can reach is

l = v2
0

g
(
1 + M

m

) = L

1 + M
m

.= 0.47 m .

Jaroslav Herman
jardah@fykos.org

Problem 35 . . . relativistic star 6 points
What would be the radius of a star with the same mass as the Sun, but its redshift would be so
large that the wavelength of the radiation coming from its surface would double for an observer
at infinity? For simplicity, consider a non-rotating spherically symmetric star.

Karel was thinking about neutron stars and black holes.

The phenomenon described in the problem statement is called a gravitational redshift. For
a spherically symmetric gravitational field, we describe it with the equation

λ∞

λ0
=
(

1 − rS

R

)−1/2
,

where λ∞/λ0 is the ratio of the wavelengths of the radiation at infinity and the source (in
this case equal to 2), R is the radius of the star, and rS denotes its Schwarzschild radius. We
determine the Schwarzschild radius from the equation

rS = 2GM
c2 ,

where M is the star’s mass and G is the gravitational constant. By substituting and modifying
the equation, we get

R = 1
1 −

(
λ∞
λ0

)−2
2GM
c2 = 4

3rS
.= 3 938 m .
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This number implies that it will not yet be a black hole, but it is not far from it, and such
a star would probably collapse into a black hole. Typical neutron stars with masses close to
the mass of the Sun can have radii on the order of 10 km.

Vojtěch David
vojtech.david@fykos.org

Problem 36 . . . billiard 6 points
The FYKOS-bird is at the pool table, which is 3.5 by 7 feet and has a hole for balls in each
corner. There are white and green balls on the table, which are otherwise the same, fitting
just right into the holes and bouncing off the walls and each other with perfect elasticity. The
FYKOS-bird originally placed the green one on the longer axis of symmetry of the table. He
nudged the white towards the green. The green crashed into one of the corner holes. However,
after several impacts from the longer edges of the table, the white ball ended up in the same
hole. How many positions on the table are there to place the green ball for this situation to
play out? Ignore the rotation of the balls. Jarda mostly hits the hole with white.
First, we will show that the sphere flies off at right angles in an elastic impact. Let us denote
the initial velocity vector of one of the spheres as v0, its velocity vector after the collision as v,
and the velocity vector of the other sphere as u. Then, the law of conservation of momentum
and the law of conservation of energy hold in the form

v0 = v + u, v2
0 = v2 + u2 .

By squaring the first equation, we get
v2

0 = v2 + u2 + 2v · u ,

which when compared with the law of conservation of energy, gives the condition v · u = 0,
or that indeed, the velocity vectors after the collision are perpendicular to each other and the
spheres move along perpendicular trajectories.

The table is symmetrical according to two axes. In the beginning, we chose one hole to hit
the balls into. Since we are placing the green ball on one of the axes of symmetry, two out of
four solutions for the four holes will be the same. On the other hand, because of the symmetry,
the solutions for two holes will be different, each of which will be on one side of the table along
the longer edge. Thus, we must multiply the number of solutions found for one ball by two at
the end.

In an elastic impact with a wall, the tangential component of the sphere’s velocity is pre-
served because the force from the wall acts only perpendicularly. This force will change the
perpendicular component of the velocity to the opposite since the sphere’s energy is conserved.
Therefore, we can think of the wall as a mirror and the sphere’s trajectory as a ray. We can
stretch this behind the wall and mirror the holes in the table and the other side of the wall.
We can do this several times in a row, showing other such reflections on the same and opposite
wall behind the first wall.

According to the previous paragraph, we used mirror reflections to project the hole into
which the two balls are to fall (see figure). The trajectories of the balls form a right triangle
with legs leading from the original location to the real and depicted hole. The point at which
the collision occurs thus lies on Thales’s circles, which always have centers at a distance of

dn = 2ns
2
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from the hole hit along the shorter side of the pool table. Its length is s = 3.5 feet. The radius
of the circles is then dn. The distance of the point of collision from this wall is

yn =

√
d2

n −
(
dn − s

2

)2
= s

√
n− 1

4 .

Since the ratio of the longer side l = 7 feet to the shorter side s is two, all possible values of yn

must be less than 2s, which corresponds to√
n− 1

4 < 2 ,

and we find that the highest index that satisfies this is n = 4. For only one hole, just four such
positions have the properties as in the statement. As we commented above, we must multiply
this result by two for all remaining holes, quickly verifying that no position lies in the center
of the table. The correct answer to the problem is therefore 8.

d1 d2 d3 d4

y1
y2

n = 1

n = 2

A

A′ A′′

s

l

Figure 5: Zrcadlové zobrazení vybrané díry a situace pro n = 1 a n = 2.

Jaroslav Herman
jardah@fykos.org

Problem 37 . . . impedance spectroscopy 7 points
In electrochemical experiments, we often encounter a method of sending an AC signal to the
device, we then change its frequency and monitor the evolution of the impedance. Consider
an alternative circuit, which consists of a parallel connection of a capacitor with capacitance C
and a resistor with R2, which are connected in series with R1. Determine the largest possible
phase shift by which the voltage is delayed behind the current if 4R1 = R2.

Jarda examined data from his bachelor’s thesis on electrolyzers.

35

mailto:jardah@fykos.org


Physics Brawl Online 2023 13th year November 22, 2023

The impedances of the individual elements are R1, R2 and −i/ (Cω). The total impedance can
therefore be written as

Z = R1 +
( 1
R2

+ iCω
)−1

= R1 + R2

1 + iR2Cω
= R1 + R2

1 +R2
2C

2ω2 − i
R2

2Cω

1 +R2
2C

2ω2 .

If we plot a graph showing the imaginary component on the vertical axis and the real component
of impedance as a function of frequency on the horizontal axis, we find that all points lie on
a semicircle centered at R1 +R2/2 and with radius R2/2. The entire semicircle lies below the
real axis. Indeed, if we denote sinψ = 2R2Cω/

(
1 +R2

2C
2ω2), we get

Z = R1 + R2

2 + R2

2 exp(−iψ) = R1 + R2

2 + R2

2 (cos(ψ) − i sin(ψ)) =

= R1 + R2

2 + R2

2

(
1 −R2

2C
2ω2

1 +R2
2C

2ω2 − i
2R2Cω

1 +R2
2C

2ω2

)
=

= R1 + R2

2

(
1 −R2

2C
2ω2

1 +R2
2C

2ω2 + 1
)

− i
R2

2Cω

1 +R2
2C

2ω2 = R1 + R2

1 +R2
2C

2ω2 − i
R2

2Cω

1 +R2
2C

2ω2 .

The largest phase shift will be achieved if the absolute value of the ratio of the imaginary to the
real component is the largest. Consider a straight line in the graph of the imaginary and real
component that is gradually tilted counterclockwise from the vertical axis. This reduces the
ratio of the imaginary to the real component. At one point, this line intersects the semicircle,
which shows all possible impedances as a function of frequency. Thus, at this point the absolute
value of the phase shift is the largest. At the same time, this straight line is now tangent to
the circle. We get a right triangle whose hypotenuse is R1 +R2/2 and one of its legs is R2/2.
So the phase shift between voltage and current is finally

φ = − arcsin
(

R2
2

R1 + R2
2

)
= − arcsin

(
R2

2R1 +R2

)
= − arcsin

(2
3

)
.= −41.8 ◦ .

The minus sign represents that the voltage is delayed behind the current, so the answer is the
absolute value of the result.

Jaroslav Herman
jardah@fykos.org

Problem 38 . . . small hole in the water balloon 7 points
We have a hollow sphere with thin walls of radius R = 10.5 cm. This sphere lies on (or is
attached to at its lowest point) a horizontal plane; it is completely filled with water and has
a hole at its highest point. Where do we need to drill another hole so that the water will spray
out as far as possible from the point of contact of the sphere with the plane? We make the
hole infinitely small. Enter the result as the angle formed by the line joining this hole and the
center of the sphere with the vertical direction (i.e., a vector perpendicular to the plane and
pointing away from it forms an angle of 0). Lego thought, that a nice problem on hydro. . .

We could use Bernoulli’s law to get the rate at which the water will spray out of the hole, but
we will simply use the reasoning from the law of energy conservation (from which Bernoulli
himself is derived). As the water sprays, the water level will fall. Thus, the kinetic energy of the
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splashing water is gained at the expense of a decrease in the potential energy of the water. We
can imagine that instead of water splashing out of the newly formed hole, which is there now, an
element of water of mass m always teleports in from the top of the sphere, and it also flies out.
We can do this reasoning because nothing happens to the water in all the other places in the
container (which in turn is a consequence of the fact that we are considering a limitingly small
hole; if it were not negligible, currents with non-negligible kinetic energy would be generated in
the container). We have also subtly exploited that, thanks to the hole at the top of the vessel,
the air pressure at the surface and in the new hole is the same. The splash element will thus
have a kinetic energy corresponding to the decrease in potential energy due to the difference in
the surface heights and the new hole. If we denote this difference by h, then

1
2mv

2
0 = mgh → v0 =

√
2gh .

So, we have the magnitude of the velocity at which the water is spraying. We still need the
direction. This will be perpendicular to the wall at that point. This is because force is pressure
times area, whereas pressure (in fluids) is a scalar quantity, so the direction of the force is given
purely by the “direction of the area.” Thus, the force pushing the water in the hole pushes it
perpendicular to the surface of the hole.

Let us denote the angle between the line of the hole with the center of the sphere and the
vertical direction as φ. Then the horizontal component of the initial velocity will be v0x =
= v0 sinφ, and the vertical component will be v0y = v0 cosφ.

The position of the hole relative to the point where the sphere touches the plane on which
it lies can be expressed using the angle φ as x0 = R sinφ and y0 = R(1 + cosφ). The top of
the sphere is, of course, at height 2R, so we can express the height difference between the hole
and the top of the sphere h as h = R(1 − cosφ).

Thus, in the vertical direction, the height above the plane will evolve as

y(t) = y0 + v0yt− 1
2gt

2 .

Putting y(td) = 0 gives the time for the water to fall. In general

td =
v0y ±

√
v2

0y + 2gy0

g
,

where we are only interested in the positive root, we don’t yet account for the initial velocity
and position, although we could (depending on preference).

The velocity in the horizontal direction does not change, so the distance from the point
where the sphere touches the plane to the point where the water hits will be the product of the
horizontal component of the velocity v0x and the time to impact td, plus the initial horizontal
distance x0. Together, then, we get

xd = v0xtd + x0 = v0x

v0y +
√
v2

0y + 2gy0

g
+ x0 .

Insert for the initial positions and times

xd =
√

2gh sinφ
√

2gh cosφ+
√

2gh cos2 φ+ 2gR(1 + cosφ)
g

+R sinφ .
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We can see that g is completely removed. Add h, and we get a relation depending only on φ

xd =
√

2R(1 − cosφ) sinφ
(√

2R(1 − cosφ) cosφ+
√

2R(1 − cosφ) cos2 φ+ 2R(1 + cosφ)
)

+R sinφ .

We can take out R and get

xd = R
(

2
√

1 − cosφ sinφ
(√

1 − cosφ cosφ+
√

(1 − cosφ) cos2 φ+ 1 + cosφ
)

+ sinφ
)
.

where R is a given constant, so we need to find φ that maximizes that bracket. Determining
the maximum of such an expression analytically is difficult but probably completely impossible.
So we’ll plot the bracket into the graph 6.
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Figure 6: Distance to which the water xd will penetrate, normalized to the radius of the
sphere R depending on the angle of the hole φ.

The graph shows that the bracket takes a maximum for φ = 1.34 rad.

Šimon Pajger
legolas@fykos.org

Problem 39 . . . changing of our star 6 points
Consider a star similar to our sun that emitted most of its energy at a wavelength of 504.7 nm
and had a radius corresponding to 0.990R⊙, where R⊙ is the radius of today’s Sun. Over
time, its composition has changed, increasing its radius to R⊙, while shifting the wavelength

38

mailto:legolas@fykos.org


Physics Brawl Online 2023 13th year November 22, 2023

of maximum emission by 3.7 nm towards the ultraviolet part of the spectrum. How much has
the luminosity of this star increased during this time?

Karel wondered about the history and future of the Sun.

For the luminosity of a black body
L = 4πR2σT 4 ,

where σ is the Stefan-Boltzmann constant. At the beginning, the star has radius R0 and
temperature T0. After the transformation, its radius changes to R1 = R⊙ and its temperature
to T . We calculate this temperature from the change in maximum wavelength. From Wien’s
displacement law we have

T0 = b

λ0
, T = b

λ0 − ∆λ ,

where b = 2.898 · 10−3 m · K is the Wien constant and ∆λ = 3.7 nm has a negative sign because
its shift is to shorter wavelengths. For temperature, we have

T = λ0

λ0 − ∆λT0 .

The ratio of luminosities is then equal to

L1

L0
= R2

1

R2
0

·
(

λ0

λ0 − ∆λ

)4
.

We are interested in how much the luminosity has changed, i.e., the number L1/L0−1 expressed
as a percentage. We get

L1

L0
− 1 = 1

0.992 ·
( 504.7 nm

504.7 nm − 3.7 nm

)4
− 1 = 0.0508 ,

which is 5.08 %.
Jiří Kohl

jiri.kohl@fykos.org

Problem 40 . . . top of the class 6 points
During one of the boring lessons at school, the students invented their own fun – they threw
a small heavy object perpendicularly upwards so that it would be as close to the ceiling as
possible, but at the same time, would not touch it. The ceiling is at a height H = 2.7 m from
the point of the throw. However, when they did this fun in physics class, the teacher made
them measure the initial velocity and its standard deviation as (7.0 ± 0.5) m·s−1. How likely
are the students to hit the ceiling if the distribution of initial velocities is Gaussian?

Jarda was listening to the Vašek’s stories.

The velocity required to hit the ceiling is

u =
√

2gH = 7.28 m·s−1 .
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Let v0 = 7.0 m·s−1 denote the mean initial velocity and ∆v = 0.5 m·s−1 the standard deviation
of the previous quantity. Then, the Gaussian curve for the given values has the form of

f(v) = 1√
2π∆v

exp
(

− (v − v0)2

2 (∆v)2

)
.

We can find the probability that the velocity of the throw is greater than v by integrating the
Gaussian curve in the limits from u to ∞ as

p = 1√
2π∆v

∫ ∞

u

exp
(

− (v − v0)2

2 (∆v)2

)
dv = 28.8 % .= 29 % ,

We had to calculate the integral numerically (e.g., using WolframAlpha).

Jaroslav Herman
jardah@fykos.org

Problem 41 . . . pressure difference 6 points
Jindra has a solid cylindrical tube with a H = 50.0 cm length and a radius of r = 4.00 cm.
One end of the tube is airtight sealed with a lid. Then, he held the tube by the lid and
began to submerge it perpendicularly beneath the sea level with the open end. What will be
the maximum difference between the pressures acting on the top and bottom lids of the tube
during submersion? Jindra submerged the tube to a depth allowed by the length of his arm,
l = 65.0 cm. The density of water is ρ = 1 024 kg·m−3. The air at sea level is under normal
conditions. Both sea water and air have the same temperature.

Jindra didn’t know how else to entertain himself on a holiday by the sea.

Let’s denote the depth of the bottom edge of the tube as d. The water inside the tube will
rise above the bottom edge and compress the air inside. Let’s denote the water column height
above the bottom of the tube as h. Equilibrium occurs when the water pressure pa + ρg(d− h)
balances the pressure of the compressed air inside the cylinder. The gravitational acceleration
is g = 9.81 m·s−2, and the atmospheric pressure is pa = 101 325 Pa (see constants). Due to the
slow submersion of the tube beneath the surface, air compression occurs isothermally. The air
inside has the same temperature as the atmosphere and the sea.

As long as the tube lid is above the surface, atmospheric pressure pa is applied to the top of
the lid. The air inside the tube, compressed at a pressure pa + ρg(d− h), pushes on its bottom
side. The difference in pressure acting on the lid is ρg(d− h).

The quantity d− h is the depth of the water surface in the tube below sea level. If we sink
the tube deeper, we increase d, the height of the water column in the tube will also increase h,
but less than the increase in d. If the water level of the column remained at the same depth
d− h below sea level as before, the water pressure would remain the same, but the air volume
would be less – the air would push the water level of the column down. If the height of the
water column h remained the same when submerged, the air would have the same pressure as
before, but the depth d − h of the column would be greater than before – the water pressure
would push the air in the tube.

Therefore, the depth d − h increases continuously as the tube is submerged. Thus, the
pressure difference ρg(d− h) increases until the lid is submerged at sea level.
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The pressure applied from above changes once the lid is submerged below sea level. Now,
the pressure of the water column above the lid and the atmosphere pa + ρg(d−H) is acting on
the lid from above. From below, the pressure of the compressed air pa + ρg(d − h) is applied.
The pressure difference is ρg(H − h). As we sink the tube deeper, the air is compressed under
increasing water pressure. As the water column height inside the h increases, the pressure
difference across the lid ρg(H − h) decreases.

The maximum pressure difference, therefore, occurs when the tube lid is aligned with the
sea surface. The isothermal compression of the air inside the tube is described by equation:

p1V1 = p2V2 ,

where p1, p2 are the initial and final pressures and V1, V2 are the initial and final gas volumes.
The initial air pressure in the tube before plunging is p1 = pa and the initial volume is V1 =
= πr2H. The final volume of air is V2 = πr2(H − h) and the final pressure is

p2 = V1

V2
p1 = πr2H

πr2(H − h)pa = H

H − h
pa .

The pressure of the water in the tube when the lid is at sea level d = H is

p2 = ρg(H − h) + pa .

These two pressures must be equal, so we get the equation for h

H

H − h
pa = ρg(H − h) + pa ⇒ h2 −

(
pa

ρg
+ 2H

)
h+H2 = 0 ,

thus

h1,2 = 1
2

 pa

ρg
+ 2H ±

√(
pa

ρg
+ 2H

)2

− 4H2

 = pa

2ρg +H ±

√(
pa

2ρg

)2

+ paH

ρg
.

The height of the water column h must be less than the height of the tube H, so we are only
interested in the root of the quadratic equation with the minus sign

h = pa

2ρg +H −

√(
pa

2ρg

)2

+ paH

ρg
.

This is plugged into the equation for the pressure difference acting on the lid

∆p = ρg(d− h) = ρg(H − h) = ρg

√(
pa

2ρg

)2

+ paH

ρg
− pa

2 ,

which gives the highest pressure difference ∆p = 4.80 kPa.

Jindřich Jelínek
jjelinek@fykos.org
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Problem 42 . . . fireworks 6 points
After the competition, the FYKOS organizers planned a fireworks display. They will launch
their firework at 45 m·s−1 perpendicularly upwards, which will disintegrate into many small
pieces in 3.3 s. These fly off in all directions from the point of disintegration at 15 m·s−1

relative to the reference frame of the original firework and glow for 5.5 s. Determine the volume
of space into which the fragments have managed to spread when they are extinguished.

Jarda likes to toast on fireworks.

The velocity of the reference frame of the firework at the moment of disintegration is u =
= v0 − gT = 12.63 m·s−1 in the upward direction, where T = 3.3 s is the time of the disinte-
gration of the firework since launch and v0 = 45 m·s−1 is the initial velocity. The problem is
rotationally symmetric, so let us consider a cut through only one plane in which we introduce
coordinates y upward and x to one of the sides so that the explosion occurred just on the x = 0
axis. Next, we will investigate the individual fragments into which the firework breaks up. Let
us denote by α the angle of the fragments with respect to the ground, v = 15 m·s−1 the velocity
of the fragments after the disintegration of the firework, τ = 5.5 s the time of their glow. The
fragment then moves in the horizontal direction with velocity vx = v cosα, while in the vertical
direction its velocity varies due to gravitational acceleration as vy = u+ v sinα− gt, where t is
the time since the disintegration of the firework. Integrating the two velocities with respect to
time gives the dependence of position on time as

x = v cosαt, y = H + ut+ v sinαt− 1
2gt

2 ,

using H = v0T − 1/2 · gT 2 = 95.1 m as the disintegration height of the original firework.
We can notice that these coordinates form a circle with centre at H + ut − 1/2 · gt2 and

radius vt depending on the angle α. Now we need to find out if all the fragments are still in
the air when the light goes out, or if some have already hit the ground. Plugging τ into the
equation for the y coordinate and putting y = 0 gives the condition

0 = H + uτ + v sinαdτ − 1
2gτ

2 ⇒ sinαd =
1
2gτ

2 −H − uτ

vτ
= 0.196 .

The fragments, whose original angle was thus less than αd, hit the ground while the others are
still in the air. The shape whose volume we are now seeking is thus a spherical canopy. We
calculate the volume of the spherical canopy as V = πh2 (3r − h) /3, where r is the radius of
the sphere and h is the height from the cut-off wall. In our case, h is the height above the
ground of the fragments that flew perpendicularly upwards in time τ after the disintegration
of the firework, i.e.

h = H + (u+ v) τ − 1
2gτ

2 = 98.7 m ,

while the radius is r = vτ = 82.5 m. The search volume is thus

V =
π
(
H + (u+ v) τ − 1

2gτ
2)2

3

(
2vτ −H − uτ + 1

2gτ
2
)
,

V =
π
(
v0 (T + τ) − 1

2g (T + τ)2 + vτ
)2

3

(
2vτ − v0 (T + τ) + 1

2g (T + τ)2
)
,
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which is approximately V .= 1.52 · 106 m3.

Jaroslav Herman
jardah@fykos.org

Problem 43 . . . electron collision 6 points
In one accelerator, colliding electrons are flying towards each other, each with an energy of
104.5 GeV. In a second accelerator, electrons with an energy of 209 GeV are flying towards
a target made of stationary electrons. How many times more energy is available for the creation
of matter in the first accelerator compared to the second?

Jindra felt like colliding his electrons.

The electrons in both accelerators are highly relativistic E ≫ m0c
2, where m0 = 9.109·10−31 kg

.= 511.0 keV/c2 is the rest mass of an electron, which we can find in the “overview of constants”.
The sum of the energies of the colliding particles is the same in both accelerators, but this
does not determine the energy of the collision. In the second accelerator, the center of mass of
the system of both electrons is also moving. Due to the conservation of momentum during the
collision, the center of mass will move after the collision as well – thus, part of the kinetic energy
is associated with the motion of the center of mass and cannot be used to create new particles.
To find the energy available for the creation of new particles in the second accelerator, we
must also study it in the coordinate system associated with the center of mass of the colliding
electrons. In the first accelerator, the situation is simple – we are already in the system
associated with the center of mass of the colliding electrons. Both electrons are identical, and
both fly towards each other with the same kinetic energy, thus also with the same momentum
and velocity. The energy available for the creation of new particles is the total energy of both
electrons

E1 = 2EA = 209 GeV ,

where we denoted EA the energy of one electron in the first accelerator.
In the second accelerator, the moving electron has energy

EB = γm0c
2 ,

where EB = 209 GeV and γ is the Lorentz factor

γ = 1√
1 − v2

c2

.

The Lorentz factor and the velocity of the electron are

γ = EB

m0c2 = 4.090 · 105 ,

v = c

√
1 − 1

γ2 = c

√
1 −

(
m0c2

EB

)2

.

The center of mass of the system moves with velocity

u = γm0v

γm0 +m0
= γ

γ + 1v
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towards the stationary electron. Now, we must relativistically transform the velocities of both
electrons and determine their velocity relative to the center of mass. The velocity of the flying
electron relative to the center of mass is

v1 = v − u

1 − uv
c2

=
v − γ

γ+1v

1 − γ
γ+1

v2

c2

=
1

γ+1

1 − γ
γ+1

v2

c2

v = 1
γ + 1 − γ v2

c2

v .

Now we will use the definition of γ and substitute it into the equation

v1 = 1

1 +
√

1 − v2

c2

v = 1
1 + 1

γ

v = γ

γ + 1v = u .

The stationary electron moves with the speed

v2 = u = γ

γ + 1v ,

towards the center of mass. Therefore, the total energy available during the collision is

E2 = 2 1√
1 − u2

c2

m0c
2 .

We simplify the fraction

1√
1 − u2

c2

= 1√
1 − γ2

(γ+1)2
v2

c2

= 1√
1 − γ2

(γ+1)2

(
1 − 1

γ2

) = 1√
1 − γ−1

γ+1

=
√
γ + 1

2 .

The total energy available during the collision is

E2 = 2
√
γ + 1

2 m0c
2 .= 462.2 MeV .

The ratio of the energies available for creating new particles in the first accelerator relative to
the second is

η = E1

E2
= 452.2 .= 452 .

Although the sum of the kinetic energies of the electrons is the same in both accelerators, and
thus the same work had to be done to accelerate them, the first accelerator offers 640 times
more energy available for the creation of new particles. That’s why modern large accelerators
like the LHC are built to collide particles flying towards each other.

We would reach the same conclusion even if we summed the energies and momenta of all
particles, subtracted their squares, and took the square root

E2 =

(∑
i

Ei

)2

− c2

(∣∣∣∣∣∑
i

pi

∣∣∣∣∣
)2

.

For the first accelerator, we get

E1 =
√

(2EA)2 − c2 (|0|)2 = 2EA = 209 GeV .
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For the second accelerator, it turns out

E2 =
√

(EB +m0c2)2 − (γm0vc)2 =

√
((γ + 1)m0c2)2 −

(
γm0c2

√
1 − 1

γ2

)2

=

= m0c
2
√

(γ + 1)2 − (γ2 − 1) = m0c
2
√

2γ + 2 = 2
√
γ + 1

2 m0c
2 .= 462.2 MeV .

We arrived at the same result as with the more laborious method of calculating velocity relative
to the center of mass. The ratio of available energies for creating new particles between our
two accelerators again turns out the same

η = E1

E2
= 452.2 .= 452 .

Jindřich Jelínek
jjelinek@fykos.org

Problem 44 . . . we want to breathe on Everest 7 points
What would be the air pressure at sea level if the Earth had an atmosphere with the same tem-
perature lapse rate as it does today (i.e., a linear decrease of temperature by 0.65 ◦C per 100 m
altitude), but at an altitude H = 8 850 m above sea level (on Mount Everest), the pressure pa
would be the same as it is today at sea level? Consider the sea level temperature T0 = 15 ◦C.

Karel was thinking about the atmosphere again.

The atmosphere holds together due to the Earth’s gravitational force; therefore, we perceive
air pressure as hydrostatic pressure. The change in pressure with altitude is

dp = −ρg dh ,

where ρ is the unknown density of air at the given altitude and the gravitational acceleration g
changes very little with altitude, so we consider it to be constant. Furthermore, we know that
for air, the state equation holds, from which we express the dependence of density on pressure
and temperature as

pV = nRT ⇒ ρ = p

T

Mm

R
,

where Mm = 28.9 g·mol−1 is the molar mass of air. We can find it in the tables, on the
internet, or express it from the values of normal pressure, density, and temperature in a list of
constants. We are also familiar with the dependence of temperature on altitude, which is equal
to T = T0 − τh, where τ = 0.65 ◦C/100 m.

By combining the equations, we get a differential equation for pressure as a function of
height

dp
p

= −Mmg

RT0
· dh

1 − τ
T0
h
.

We integrate the equation and substitute the boundary conditions: the pressure at altitude H
is pa, and the pressure at sea level 0 m is p0

[ln p]pa
p0

= −Mmg

RT0

[
ln
(

1 − τ

T0
h
)

·
(

−T0

τ

)]H

0
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from where

p0 = pa

(
1 − τ

T0
H
)− Mmg

Rτ .= 327 kPa .

Jiří Kohl
jiri.kohl@fykos.org

Problem 45 . . . a lake on a mirror reloaded 7 points
On a table, Jindra laid a hollow spherical mirror with a radius of curvature of r = 2.00 m
and a diameter D = 12.0 cm. The optical axis of the mirror points upwards. On the mirror,
he poured water with a refractive index n = 1.33 so that the water formed a surface with
a diameter d = 6.00 cm. Jindra illuminated the whole surface of the mirror with rays of light
parallel to the optical axis. At what height above the table would an image with the smallest
outer diameter possible be created on a hypothetical screen?

Jindra misses summer swimming.

The focal point of a concave mirror is the point where reflected rays parallel to the optical
axis intersect. The focal length is the distance from the focal point to the vertex of the mirror
(the point on the mirror’s surface lying on the optical axis). In the paraxial approximation, we
assume that the angles of all incoming and reflected light rays with the optical axis are small,
i.e., α ≪ 1. Parallel rays to the optical axis hitting the mirror’s surface at a perpendicular
distance h from the optical axis will reflect at an angle α ≈ 2h/r. Therefore, in the paraxial
approximation, all reflected rays intersect the optical axis at the same distance

f0 = h

α
= r

2
independent of h. The focal length of a hollow spherical mirror is equal to half the radius of
curvature. Therefore, the part of the mirror not covered by water has a focal length of

f0 = r

2 = 1.00 m.

The part of the mirror covered with water has a shorter focal length. The perpendicular water
surface does not affect the direction of the rays coming parallel to the optical axis. However, the
rays reflected from the mirror strike the water-air interface at an angle to the perpendicular α ≈
≈ 2h/r, where h is the perpendicular distance from the optical axis. According to Snell’s law,
these rays break at an angle α′ ≈ nα and intersect the optical axis closer than the original focal
length f0, at a distance of

f = h

α′ = r

2n = 0.752 m.

The light reflected by the outer part of the mirror without water forms a ring of light with an
outer diameter of

δ0 = D
|f0 − x|
f0

,

where x is the distance of the hypothetical diaphragm from the top of the mirror. The central
part of the mirror covered with water then forms a circle of light with a diameter of

δ = d
|f − x|
f

.
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The smallest outer diameter of the image occurs at a distance x where δ0 = δ. For this position,
f < x < f0 necessarily holds. We, therefore, solve the equation

D
f0 − x

f0
= d

x− f

f

for x. Substitute f = f0/n, and we have the equation

D
f0 − x

f0
= nd

x− f0
n

f0
,

which we further manipulate to

x(D + nd) = Df0 + df0.

The solution to the equation is
x = f0(D + d)

D + nd
,

which gives x = 0.901 m.

Jindřich Jelínek
jjelinek@fykos.org

Problem 46 . . . coin funnel 7 points
Consider a heavy hemispherical bowl of 19 cm in diameter and take a point mass that can move
in the bowl completely frictionless. We release it from the bowl’s edge with velocity 0.8 m·s−1

in the horizontal direction. What is the minimum height above the bottom of the bowl that the
point mass can reach as it travels through the bowl? Jarda’s wallet spilled out on the street.

It is always possible to determine the position of a mass point using two parameters. Firstly, the
angle θ represents the angle between the position vector of the mass point and the horizontal
plane, originating from the center of the upper circle. Secondly, the angle φ describes the
translation around the hemisphere’s rotational axis from the beginning of the motion. From
the initial condition we have θ(t = 0) = 0 ◦ and we can put φ(t = 0) = 0 ◦. Moreover, let us
denote R = 19 cm

2 = 9.5 cm.
Two forces act on the mass point during its motion in the hemisphere -– the weight and the

bowl’s reaction. Looking from above, we can see that the weight always acts downwards, and
the bowl’s reaction always acts in the direction of the center of the hemisphere. Thus, there
is no force that, when viewed from above, acts tangentially on the motion of the point. That
implies the law of conservation of the vertical component of the angular momentum of the mass
point in relation to the rotational axis of symmetry of the whole hemisphere. We can write it
as

(L)z = m (r × v)z = mrxvy −mryvx .

Let’s consider a rotation of the axes such that ry = 0. Then rx = R cos θ. The velocity
component vy is tangent to the horizontal circle on which the mass point currently lies, and
the component’s magnitude is vy = R cos θφ̇, where φ̇ is the angular velocity about the axis of
symmetry of the whole hemisphere. We get the law of conservation of the vertical component
of angular momentum as Lz = mR2 cos2 θφ̇.
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Since the mass point is moving without friction, the law of conservation of mechanical energy
also holds throughout the problem. The law of conservation of mechanical energy is

E = 1
2m
(
R2θ̇2 +R2 cos2 θφ̇2)− gR sin θ .

Even though we can already calculate the rest of the problem from these two conserved quan-
tities, we still have to determine their values from the initial conditions. For Lz we have Lz =
= mR2 v

R
= mvR, while for the energy we have E = 1

2mv
2. From the conservation law of Lz

we substitute φ̇ into the equation for energy and we get

1
2mv

2 = 1
2m
(
R2θ̇2 + v2

cos2 θ

)
− gR sin θ ,

where we express θ̇2 as
θ̇2 = 1

R2

(
2gR sin θ − v2 tan2 θ

)
.

Now comes a crucial consideration. For an arbitrarily small initial velocity v, increasing θ will
lead to a situation where the right-hand side of the equation is negative due to the properties
of the function tan x. However, the left side is the square of a real number, and this side must
always be non-negative. The critical angle θ occurs when the angular velocity θ̇ is zero. At this
point, its sign changes, and the mass point rises again. Thus, we get the equation

2gR sin θc = v2 tan2 θc ⇒ sin2 θc + v2

2gR sin θc − 1 = 0 .

From this quadratic equation, we find sin θc as

sin θc = − v2

4gR +
√

v4

16g2R2 + 1 ,

where we chose a positive sign because we expect a positive value of the result. This expression
is always less than 1, so we can always find the angle θc. This result corresponds to the minimum
height

h = R (1 − sin θc) = R

(
1 + v2

4gR −
√

v4

16g2R2 + 1
)

= 1.5 cm ,

which the mass point can reach.

Jaroslav Herman
jardah@fykos.org

Problem 47 . . . a point jumps over a cuboid 7 points
Once upon a time in the land of geometric shapes, a point mass was sitting still on a horizontal
plane when it suddenly spotted a cuboid h = 20.0 cm tall and l = 280 cm long approaching it
with a speed vk = 6.80 m·s−1. Our poor point mass realizes the time to jump away ran out,
so it just jumps over it. What is the minimum speed that the point mass needs to jump in
order to be able to jump over the block? The point mass does not only need to jump vertically
upwards. This idea has been in Lego´s ideapad for such a long time
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If the point jumps along the optimal (the one that has the minimum speed) trajectory, it surely
touches the upper front edge, stops rising exactly above the center of the cuboid, and touches
the upper back edge as it is falling. There is an unlimited amount of possible trajectories
satisfying the problem, so we look just for the one that needs the least speed.

When we denote the speed with which the point jumped off the plane v0 and the speed it
will have when touching the front edge of the cuboid v1, then the law of conservation of energy
tells us

1
2mv

2
0 = mgh+ 1

2mv
2
1

v0 =
√

2gh+ v2
1 ,

so it is enough to minimize the speed v1 and plug it all in.
If we start watching the motion of the point mass at the moment it touches the front edge,

the conditions that it stops rising exactly above the center of the cuboid and that it touches
the back edge falling are equivalent (the reader can prove this mathematically). We will use
the first one.

The time it takes for a point to reach the same horizontal position as the center of the
cuboid is obtained by dividing their distance (which is at first equal to half the length of the
cuboid, or l/2) by their relative speed, which is v1x +vk. We denoted the horizontal component
of the velocity vector v1x. This is positive if the point jumps toward the block and negative if
it jumps backward. Intuitively, to minimize the required speed, one would rather jump so that
the mutual speed adds up, but it is not necessary to assume this.

We might obtain the time for the point to stop rising by dividing its vertical velocity
component (let’s denote it by v1y) by the gravitational acceleration g.

Then the condition that it stops rising above the center of the cuboid can be expressed as
the equality of these two times

l/2
v1x + vk

= v1y

g
.

This condition therefore limits for which combinations of v1x and v1y the point stops rising
exactly above the center of the cuboid. However, we are interested in just one of these combi-
nations which also minimizes the speed |v1| =

√
v2

1x + v2
1y. Minimizing the speed is the same

as minimizing the speed squared, so we raise the power and get rid of the square root. We plug
v1y obtained from the stopping condition and get

v2
1 = v2

1x + v2
1y = v2

1x +
(
lg

2
1

v1x + vk

)2
,

where we expressed the quantity to minimize (v2
1) as a single-variable function of (v1x). There-

fore we find the extrema by setting the derivative with respect to the only variable to zero

dv2
1

dv1x
= 2v1x + l2g2

4
−2

(v1x + vk)3 = 0 ⇒ v1x = l2g2

4
1

(v1x + vk)3 ,

which is a quartic equation we really don’t want to solve (not even reasoning which one of the
4 solutions truly represents the global minimum), instead, we plot v2

1 against v1x in a graph 7.
We can clearly see the expression reaches the minimum for v2

1
.= 3.789 m2·s−2 for v1x

.=
.= 0.487 m·s−1 (which matches the intuition that one rather jumps toward). If one were to be
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Figure 7: The graph of v2
1 against v1x

concerned about whether there might not be some even smaller minimum, just remember that
v2

1 > v2
1x must hold, so |v1x| >

√
3.789 m2·s−2 .= 1.95 m·s−1 is truly the smallest.

Then we just have to remember to plug that back into v2
1 and into v0, which gives us that

the point must jump off the ground with a speed equal to at least

v0 =
√

2gh+ v2
1
.= 2.78 m·s−1 .

Šimon Pajger
legolas@fykos.org

Problem 48 . . . oscillating lens 8 points
Let’s place an isotropic light source on the optical axis of a lens with a focal length of f = 8.5 cm
at a distance A = 11 cm from its center. Then, we attach a spring to the lens, allowing it to
perform torsional oscillations. The axis of oscillation is perpendicular to the optical axis of the
lens. The moment of inertia of the lens with respect to this axis is J = 63 kg·mm2, and the
torque acting on the lens is proportional to the angle of rotation from the equilibrium position
as M = −cφ, where c = 3.7 mJ. What is the maximum speed at which the image of a point of
light moves if the lens is deflected 5 ◦ from its equilibrium position and let go?

Jarda wanted to combine optics and oscillation.
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Let us first consider what movement the lens makes. From the problem statement, we know
the momentum is M = −cφ, and from the rotational analogy of Newton’s second law, we know
that the time change of angular momentum is equal to the net torque. We therefore get

Jφ̈ = −cφ ,

which is incidentally the equation of a harmonic oscillator. Its solution is

φ = φ0 cos(ωt) ,

where ω =
√

c
J

is the angular velocity of the lens’ oscillation about its axis.
Using simple geometry, the position of an object relative to time on the lens’ optical axis

can be determined by the equation a = A cosφ. Similarly, the object’s distance from the axis
can be calculated using the equation y = A sinφ. Then, we can use the thin lens formula to
display the image of a point located at a distance of a′ = af

a−f
on the lens axis. Because of the

rule that a ray passing through the center of the lens is not refractive, we know that the image
will be at the junction of the object and the center of the lens. This line is deflected by an
angle φ from the optical axis, and the position of the image is thus at a distance

A′ = a′

cosφ = Af

A cosφ− f
.

Substituting for the angle φ gives the time dependence of the image’s position as

A′ = a′

cosφ = Af

A cos
(
φ0 cos

(√
c
J
t
))

− f
.

By deriving with respect to time, we find the speed of the image as a function of time

V ′ = dA′

dt = −Af(
A cos

(
φ0 cos

(√
c
J
t
))

− f
)2

(
−A sin

(
φ0 cos

(√
c

J
t
)))(

−φ0

√
c

J
sin
(√

c

J
t
))

.

We plot this function in some graphical editor and find that the magnitude of the velocity is
maximal at 4.9 cm·s−1.

Jaroslav Herman
jardah@fykos.org

Problem 49 . . . epic fail 8 points
Radek and Radka are merrily enjoying the ride on the carousel, with Radka sitting a quarter
circle in front of Radek (in the direction of rotation). In a moment of mischief, Radka throws a
rotten tomato directly at Radek, but after less than half of the carousel’s rotation period, the
tomato appears back in Radka’s face. Determine the magnitude of the velocity (as the ratio of
κ > 0 to the circumferential velocity of the carousel) with which Radka threw the tomato. This
grotesque took place in weightlessness. Radka didn’t want to hit. . . Didn’t want to hit herself.

Since the velocity is to be expressed in units of circumferential velocity, let’s set the circumfer-
ential velocity equal to 1. Then, κ will be the magnitude of the velocity at which Radka threw
the tomato (relative to herself). Since she was throwing directly at Radek from her point of
view, the angle that the tomato’s velocity vector made with the position vector in the rotating
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system at the moment of the throw must have been equal to π/4. This position vector marks
the boundary of the two half-planes.

If the tomato is to come back to Radka in less than half a period, the velocity of the tomato
in the nonrotating system at the moment of ejection must be in the opposite half-plane to that
of Radek.2 In this half-plane, the tomato then knocks off Radka.

From now on, we solve the problem in a non-rotating (inertial) frame. At the instant of the
ejection, the radial component of the tomato’s velocity was equal to κ/

√
2, while the tangential

component was 1 − κ/
√

2 (in the direction of rotation). Thus, the angle α that the velocity in
the non-rotating system makes at the moment of the tomato’s ejection with the position vector
satisfies

cosα = κ/
√

2√
1 + κ2 −

√
2κ

,

sinα = 1 − κ/
√

2√
1 + κ2 −

√
2κ

.

Because the magnitude of the velocity of a tomato in a non-rotating system can be calculated
from the law of cosine as

v =
√

1 + κ2 −
√

2κ .

Let the radius of the carousel also be unitary because the result will certainly not depend on
it. The distance the tomato travels before returning to the circumference of the carousel can
be found from an isosceles triangle (with vertices Radka - the center of the carousel - the point
where the tomato hits Radka, the angle at the first and last vertex being α) as

s = 2 cosα .

So the tomato will return to the perimeter of the carousel in time

τ = s

v
= 2 cosα√

1 + κ2 −
√

2κ
=

√
2κ

1 + κ2 −
√

2κ
.

We will now try to manipulate this expression using the formulas for the sine and cosine of a
double angle. We find that

sin 2α = 2 sinα cosα =
√

2κ− κ2

1 + κ2 −
√

2κ

and
cos 2α = cos2 α− sin2 α =

√
2κ− 1

1 + κ2 −
√

2κ
.

2This can undoubtedly be achieved by choosing κ <
√

2.
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Thus, we can rewrite τ as

τ =
√

2κ
1 + κ2 −

√
2κ

=

= 1 + κ2 −
√

2κ+
√

2κ− 1 − κ2 +
√

2κ
1 + κ2 −

√
2κ

=

= 1 +
√

2κ− 1 − κ2 +
√

2κ
1 + κ2 −

√
2κ

=

= 1 + sin 2α+ cos 2α .

If the tomato is to smash against Radka’s face, we must also have

τ = π− 2α .

Since the time τ takes Radka to reach the point where her face meets the tomato is due to the
unit rotation speed of the carousel corresponding directly to the angle of its rotation. Therefore,
after substituting x = 2α, we solve the equation

1 + x+ sin x+ cosx = π .

The obvious root is x = π, which gives κ = 0, i.e., zero speed of the tomato (but this way,
the tomato returns to Radka somewhat trivially). The second (and only other) root is found
iteratively as

x
.= 0.729 581 5 .

From here, after expressing tanα as a fraction of sin and cosine, we get the speed of a tomato

κ =
√

2
1 + tan x

2

.= 1.023 397 .

Radka Křížová
radka.krizova@fykos.org

Problem 50 . . . intermittent voltage 7 points
In the circuit, a capacitor with capacitance C = 47 nF and a resistor with resistance R = 220 kΩ
are connected in series to an intermittent voltage source with period 2T = 20 ms. The voltage
waveform over one period is

V (t) =
{

0 V −T < t < 0;
9.0 V 0 ≤ t < T.

Determine the difference between the highest and lowest voltage on the capacitor at steady
state. Jindra was playing with a switch in a DC circuit.

We can describe the relationship between the charge Q and the voltage Vc across the capacitor
as

Q = CVc ,

where C is the capacitance of the capacitor.
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At the stage of period 0 ≤ t < T , the voltage V0 = 9.0 V is constant at the source.
During this phase, the voltage across the capacitor will increase and it will be the highest when
the source switches to the V = 0 V stage. At that point the voltage will start to decrease,
and it will be the lowest at the moment of switching back to the V = V0 = 9.0 V stage. Let us
call the lowest voltage on the capacitor V− and the highest one V+.

In the stage when a voltage of the source is V = V0, the charge on the capacitor Q is
governed by the differential equation

V0 − Q

C
−R

dQ
dt = 0 .

Using the relationship Q = CVc we can rewrite the differential equation for the voltage Vc
across the capacitor

V0 − Vc −RC
dVc

dt = 0 .

The initial condition is Vc(0) = V−. The solution to this differential equation is a function

Vc(t) = V0 − (V0 − V−)e− t
RC .

The equation must hold at time t = T , therefore

V+ = V0 − (V0 − V−)e− T
RC .

During the zero voltage stage of the source, the charge Q on the capacitor is governed
by the differential equation

Q

C
+R

dQ
dt = 0 ,

which can again be rewritten using the voltage Vc across the capacitor

Vc +RC
dVc

dt = 0 .

The initial condition is Vc(0) = V+. The solution to this differential equation is a function

Vc(t) = V+e− t
RC

at time t = T , the following must hold

V− = V+e− T
RC .

We get a system of two equations with two unknowns V−, V+

V− = V+e− T
RC ,

V+ = V0 − (V0 − V−)e− T
RC .

From the first equation, we substitute V− into the second equation and get

V+ = V0
1

1 + e− T
RC

.
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After putting this back into the first equation of V+, we get

V− = V0
e− T

RC

1 + e− T
RC

.

The difference between the highest and lowest voltage on the capacitor is

V+ − V− = V0
1 − e− T

RC

1 + e− T
RC

.

After substituting the numbers from the problem statement, we get the difference 4.04 V .=
.= 4.0 V.

Jindřich Jelínek
jjelinek@fykos.org

Problem 51 . . . Van Allenovi is just bright 8 points
In the equatorial plane, at a distance of two Earth radii from the center of Earth, there is
a proton with energy E = 1 keV, which is pointing at an angle α = 45 ◦ from the force line
towards the North Pole. As it approaches Earth, at one moment it is reflected by a magnetic
mirror and returns towards the South Pole. Determine the (magnetic) latitude at which this
happens. Treat the Earth’s magnetic field as a dipole.

Figure 8: Representation of proton behavior.

Kačka got the result, but wanted to check it.

A proton in the Earth’s magnetic field performs several motions, the simplest is the cyclotron
motion around the magnetic field line, that is, the part of the motion perpendicular to the field
line. In the direction parallel to the field line, the particle moves uniformly. However, as the pro-
ton approaches the pole along the magnetic field line, the amplitude of the magnetic induction
increases because, in this case, it must maintain its magnetic moment. Due to the conservation
of the magnetic moment µ = mv2

⊥/(2B) the velocity parallel to the magnetic field changes to
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a velocity perpendicular to the magnetic field. Earth’s magnetic field is considered a dipole, the
expression of the magnetic field in polar coordinates is B(r, θ, φ) = (B0R

3
E/r

3) (2 cos θ, sin θ, 0) 
and the shape of the magnetic field line, which is in the equatorial plane in a distance L from
the center of Earth, is r(θ) = L sin2(θ). This gives us the condition for reflection, from the
conservation of the magnetic moment we write:

µ = mv2
⊥

2B(2RZ , 0) = mv2

2B(2Rz sin2 θr, θr)
.

We substitute for the magnetic field and express the angle θr:

mv2 sin2 α

2B0
R3

E
(2RE)3

= mv2

2B0
R3

E
(2RE sin2 θr)3

√
4 cos2 θr + sin2 θr

,

sin2 α = sin6 θr√
4 cos2 θr + sin2 θr

,

sin2 α
√

4 − 3 sin2 θr = sin6 θr ,

sin4 α
(
4 − 3 sin2 θr

)
= sin12 θr .

Using the substitution x = sin2 θr we get the equation sin4 α (4 − 3x) = x6, which is analytically
unsolvable. However, when we substitute the known angle α = 45 ◦ then sin2 α = 0.5. The
problem can be solved numerically, yielding a positive result of sin2 θr = 0.846 → θr = 66.87◦.
The magnetic width is then the complementary angle, 23.13 ◦.

Kateřina Rosická
kacka@fykos.org

Problem 52 . . . flying mud 8 points
A tire with an outer diameter d = 63.2 cm is rolling on a flat surface at a constant speed v =
= 15.0 m·s−1. Suddenly, a piece of mud gets ejected from its rotating circumference. The soil
flies through the air and eventually lands on the ground. Subsequently, the tire passes over the
fallen piece of mud with the same part from which it was ejected. How long was the soil on the
ground before the tire ran over it? Disregard air resistance during the flight of the mud. The
mud did not fall farther than 4.00 m along the horizontal axis from the release point.

While driving, a fallen tractor wheel whizzed past Jindra.

We will measure the angle α on the tire from the vertical direction. In the reference frame
connected to the ground, the mud has a velocity vector

u = v (1 + cosα,− sinα) .

When the piece of mud separates from the wheel, the mud with this initial velocity vector
will continue in free fall toward the ground. However, we currently do not know the angle α
that determines the location of the mud separation. Therefore, we will derive an equation to
calculate the angle α. The piece of mud begins its fall to the ground from a height

h = r(1 + cosα) ,
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where r = 31.6 cm is the radius of the tire. Its vertical position y and horizontal position x
relative to the release point are

y = −vt sinα− 1
2gt

2 ,

x = v (1 + cosα)t .

We will express the time t = x/(v(1 + cosα)) from the second equation and substitute it into
the first equation, resulting in a dependence y = y(x)

y = − sinα
1 + cosαx− g

2v2(1 + cosα)2 x
2.

The mud hits the ground when y = −h = −r(1 + cosα), thus obtaining a relationship between
the impact location x and the separation angle α

g

2v2(1 + cosα)2 x
2 + sinα

1 + cosαx− r(1 + cosα) = 0 ,

1
2x

2 + v2 sinα(1 + cosα)
g

x− rv2(1 + cosα)3

g
= 0 .

The roots of this equation are

x1,2 = −v2 sinα(1 + cosα)
g

±

√(
v2 sinα(1 + cosα)

g

)2

+ 2rv2(1 + cosα)3

g
.

We are interested only in the positive root

x1 = (1 + cosα)

−v2 sinα
g

+

√(
v2 sinα

g

)2

+ 2v2r(1 + cosα)
g

 .

It is important to note that the current x-position is relative to the point of mud separation.
However, we need to find the x-position relative to the point where the wheel contacts the
ground at the time of mud separation. To achieve this, we must calculate the separation
point’s x-coordinate in relation to the point of contact, which can be expressed as r sinα.

For the wheel to run over the piece of mud at the same spot from which it previously
separated, it must rotate by an angle π−α and complete k full revolutions. The mud must fall
at a distance r(2k π+ π−α) from the wheel’s point of contact with the ground. Therefore, we
obtain an equation for the separation angle

r(2k π+ π− α) = r sinα+ (1 + cosα)

−v2 sinα
g

+

√(
v2 sinα

g

)2

+ 2v2r(1 + cosα)
g

 ,

which we have to solve numerically. If we divide both sides of the equation by r, we can
introduce a dimensionless parameter A = v2/(gr), which will simplify the equation

(2k + 1)π = α+ sinα+ (1 + cosα)
(

−A sinα+
√

(A sinα)2 + 2A (1 + cosα)
)
.
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After substituting A = 72.58 according to the given numbers for various k, we find (for example,
using the function scipy.optimize.fsolve() in Python) numerical solution

k = 0, α = π rad, x1 = 0 m,
k = 1, α = 0.407 0 rad, x1 = 2.72 m,
k = 2, α = 0.204 2 rad, x1 = 4.84 m.
...

...
...

The case k ≥ 2 does not satisfy the condition from the task that the mud landed closer
than 4.00 m horizontally from the release point. The case k = 0 is again unsatisfactory because
the soil did not fly through the air. It is a trivial case where the mud remained on the tire.
The only possible solution is for k = 1.

The wheel traveled a distance D = r(2π+ π− α) in time

tk = D

v
= 0.190 0 s .

The mud was flying through the air for a duration before hitting the ground

t = x1

v(1 + cosα) = 0.094 7 s .

The time period when the mud lay on the ground before being run over again was T =
= tk − t = 0.0953 s

Jindřich Jelínek
jjelinek@fykos.org

Problem 53 . . . maximal activity II 9 points
Jindra has N0 = 109 atoms of the radioactive isotope 212Bi. It decays to the isotope 212Po with
probability Pβ = 64.06% by beta decay and to the isotope 208Tl with probability Pα = 35.94%
by alpha decay. The half-life of bismuth is TBi = 60.6 min. The polonium isotope decays further
by alpha decay with a half-life of TPo = 299 ns to the stable isotope 208Pb. The thallium isotope
decays by beta decay with a half-life of TTl = 3.05 min also to lead 208Pb.

How long does it take Jindra to measure the maximum activity in the system?
Jindra measured the half-life of 212Po.

For the purpose of solving the problem, it will be easier to work with decay constants

λ = ln 2
T1/2

than with half-lives T1/2. The decay constants for each isotope are

λBi = 1.91 · 10−4 s−1, λPo = 2.32 · 106 s−1, λTl = 3.79 · 10−3 s−1.

For clarity, we use the variable A for the number of bismuth atoms, B for the polonium
atoms, C for the thallium atoms, and D for the lead atoms. The total activity R in the system
depends on the actual amounts of the isotopes of bismuth A, polonium B, and thallium C.

R = λBiA + λPoB + λTlC. (8)
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Therefore, we must solve a system of differential equations describing the decay series to find
how A, B, and C evolve in time. The system of differential equations describing the amount
of each isotope over time is

Ȧ = −λBiA,

Ḃ = PβλBiA − λPoB,

Ċ = PαλBiA − λTlC,

Ḋ = λPoB + λTlC,

with initial conditions A(0) = N0, B(0) = 0, C(0) = 0, D(0) = 0.
This system of differential equations can be solved from the top line by line. The first line

of the equation has the solution
A(t) = N0e−λBit.

Add this to the second line and solve the differential equation

Ḃ = PβλBiN0e−λBit − λPoB

with initial condition B(0) = 0. The solution is the function

B(t) = PβλBiN0

λPo − λBi

(
e−λBit − e−λPot

)
The differential equation on the third line has the same structure as the equation on the second
line and the same initial condition, so its solution is

C(t) = PαλBiN0

λTl − λBi

(
e−λBit − e−λTlt

)
We plug the derived functions into the equation (8) for the activity

R(t) = λBiN0e−λBit + PβλBiλPoN0

λPo − λBi

(
e−λBit − e−λPot

)
+

+ PαλBiλTlN0

λTl − λBi

(
e−λBit − e−λTlt

)
(9)

We verify that in the limit t → ∞, the activity goes to zero R → 0 due to decreasing expo-
nentials. This is consistent with our expectation, since in a long time, most of the radioactive
atoms decay and only stable 208Pb remain.

To find the maximum of the activity, we have to derive the function (9)

Ṙ = λBiN0

(
− λBie−λBit − PβλBiλPo

λPo − λBi
e−λBit + Pβλ

2
Po

λPo − λBi
e−λPot−

− PαλBiλTl

λTl − λBi
e−λBit + Pαλ

2
Tl

λTl − λBi
e−λTlt

)
. (10)

Let’s see that at time t = 0 the change in activity over time is positive

Ṙ(0) = λBiN0 (−λBi + PβλPo + PαλTl) > 0,
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therefore, initially, the decay activity in the system increases. At some point, it reaches a max-
imum, and then in the limit t → ∞, the activity drops to zero.

We determine the time of maximum activity by setting the derivative of the activity
with respect to time (10) equal to zero and solving for time t. Due to the fact λP o ≫ λT l

and λP o ≫ λBi, we can neglect the term with the exponential e−λP ot in the equation.

−λBie−λBit − PβλBiλPo

λPo − λBi
e−λBit − PαλBiλTl

λTl − λBi
e−λBit + Pαλ

2
Tl

λTl − λBi
e−λTlt = 0

We gradually isolate the time t

e(λTl−λBi)t =
Pαλ2

Tl
λTl−λBi

λBi + PβλBiλPo
λPo−λBi

+ PαλBiλTl
λTl−λBi

≈
Pαλ2

Tl
λTl−λBi

λBi + PβλBi + PαλBiλTl
λTl−λBi

t = 1
λTl − λBi

ln

 Pαλ2
Tl

λTl−λBi

λBi + PβλBi + PαλBiλTl
λTl−λBi

 .

After plugging in the numbers, the time of maximum activity in the system comes out t =
= 366 s = 6.09 min.

Jindřich Jelínek
jjelinek@fykos.org

Problem 54 . . . Mišo is shooting 9 points
Mišo likes to shoot from a laser. He needs to reduce its energy with reflective gray (neutral
density, ND) filters. He would like to achieve a beam with an energy 37 J. Mišo has 5 filter
holders and 7 different filters, namely 2-stop ND, 3-stop ND, 5-stop ND, 7-stop ND, 11-stop
ND, 13-stop ND, and 17-stop ND. Assume that all energy striking the filter is either reflected
or transmitted. The laser has an energy of 77 377 J. With what accuracy can he achieve
the desired 37 J? Give the result in mJ. Mišo was calculating the filtering at the PALS

There will be an infinite number of reflections in the spaces between the filters. One possibility
would be to compute infinite series. However, this is not necessary. We will be interested
in the total amount of energy flowing in the spaces in between the filters. We denote the input
energy 77 377 J by E and we assume that the laser is shining from the left. Firstly, let’s
suppose that we have used all five holders. We denote all the filters starting from the left by
the indices 1 to 5. We then denote by the same indices the energies E flowing from the given
filters towards the right and the returning energies R flowing into the given filters from the right.
The resulting energy coming out of the system of filters will be E5.

k1 k2 k3 k4 k5
E E1 E2 E3 E4 E5E E1 E2 E3 E4 E5

R R1 R2 R3 R4

Figure 9: Energy in the spaces between the filters
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The number n in the ND filter label indicates how much light passes through the filter

Epasses = Eenters · 2−n .

We substitute k = 2−n and then for the coefficient k we can get

k =
{1

4 ,
1
8 ,

1
32 ,

1
128 ,

1
2 048 ,

1
8 192 ,

1
131 072

}
, .

Energy is not lost in the filters, so

Ereflect = Eenters · (1 − ki) , Ereflect + Epasses = Eenters .

We place five filters with coefficients k1, k2, k3, k4, k5 whose values can be any combination
from the set k in the holders. The following equations will hold on the interfaces

E5 = k5E4 ,

E4 = k4E3 + (1 − k4)R4 ,

E3 = k3E2 + (1 − k3)R3 ,

E2 = k2E1 + (1 − k2)R2 ,

E1 = k1E + (1 − k1)R1 ,

R4 = (1 − k5)E4 ,

R3 = (1 − k4)E3 + k4R4 ,

R2 = (1 − k3)E2 + k3R3 ,

R1 = (1 − k2)E1 + k2R2 ,

where Ei are the energies flowing to the right and Ri are the energies flowing to the left.
We got nine equations with nine unknowns (5 times Ei and 4 times Ri), which we will solve

using the matrix notation and Cramer’s rule. The matrix notation of the equations above is
as follows

1 −k5 0 0 0 0 0 0 0
0 1 −k4 0 0 k4 − 1 0 0 0
0 0 1 −k3 0 0 k3 − 1 0 0
0 0 0 1 −k2 0 0 k2 − 1 0
0 0 0 0 1 0 0 0 k1 − 1
0 k5 − 1 0 0 0 1 0 0 0
0 0 k4 − 1 0 0 −k4 1 0 0
0 0 0 k3 − 1 0 0 −k3 1 0
0 0 0 0 k2 − 1 0 0 −k2 1


︸ ︷︷ ︸

Túto maticu označme A



E5
E4
E3
E2
E1
R4
R3
R2
R1


=



0
0
0
0

k1E
0
0
0
0


.

For Cramer’s rule, we need the determinant of the matrix A and the determinant of the ma-
trix A1 where we replace the first column with the vector on the right-hand side of the equation.
We replace the first one because we only want to find E5, which is the first unknown in our
ordering. We get

E5 = detA1

detA = E · k1k2k3k4k5

k1k2k3k4 + k1k2k3k5 + k1k2k4k5 + k1k3k4k5 + k2k3k4k5 − 4k1k2k3k4k5
,
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which can be simplified as

E5 = E · 1
1

k1
+ 1

k2
+ 1

k3
+ 1

k4
+ 1

k5
− 4

= 1
2n1 + 2n2 + 2n3 + 2n4 + 2n5 − 4 ,

Where ni are the stop numbers of the ND filters.
By an analogous process for N = {1, 2, 3, 4, 5} filters, we obtain in general

EN = E ·

(
1 −N +

N∑
i=1

2ni

)−1

, (11)

where EN is the resulting energy leaving the system of N filters. This relation likely holds
for any N . We can see that the resulting energy is not dependent on the order of the filters
in the holders. All permutations for a given combination are the same. Our goal now will be
to find a combination whose energy is as close to 37 J as possible, according to the relation (11).

From the relation (11), we can express and calculate the sum of the terms 2ni , putting EN =
= 37 J, which is the desired output energy to which we want to get as close as possible.

N∑
i=1

2ni = E

EN
+N − 1 .= 2090 +N . (12)

Now we can go through all the combinations using a script and find the best one. However, we
can also obtain the result by simple reasoning.

We have the terms 2ni = 1/ki, so 4, 8, 32, 128, 2 048, 8 192, 131 072, to “make up” the
number 2 090+N . So we need to use the number 2 048 = 211, which is an 11-stop filter. Higher
ND filters are too strong. That leaves 42 +N left from the sum, so 128 is too much, and we use
a 5-stop filter, which corresponds to 25 = 32. That leaves 10 +N . The best we can do is to use
the remaining 2 filters that we haven’t eliminated yet. That is the 2-stop ND and the 3-stop
ND, which together give 22 + 23 = 4 + 8 = 12. We have used 4 filters, which means that N = 4.
This gives us 2094 on the right-hand side of the equation (12), which is almost exactly equal
to the sum on the left-hand side, which we determined to be 2 048 + 32 + 8 + 4 = 2 092.

Finally, we calculate the deviation of ∆E energy EN from 37 J using the relation (11)
for the best set of filters, namely 2-stop ND, 3-stop ND, 5-stop ND and 11-stop ND,

∆E = 77 377 J ·
(
1 − 4 + 22 + 23 + 25 + 211)−1 − 37 J .= 40 mJ

Radovan Lascsák
radovan.lascsak@fykos.org

Problem 55 . . . Red Wednesday 9 points
Lego is situated aboard a space station in deep space. To avoid going crazy, he keeps watching
what is the day today on Earth. He knows that last Sunday he launched a rocket (at rest) with
a rest mass m0 = 31.0 kg propulsed by an ion thruster which does not reduce the rest mass;
however, it exerts a constant force F . The rocket glows with a golden light λ0 = 600 nm in
such a way that when Lego points his telescope at it today at midday (specifically ts = 72.0 h
since the launch), he sees a red light λr = 670 nm. How big is the force F?

Lego spotted a pattern in the date of Physics Brawl Online. . .
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Redshift is a well-known case of a Doppler effect. To be specific, there is a relation between
the emitted light’s wavelength λ0 and the received wavelength λr

λr = λ0

√
1 + v/c√
1 − v/c

,

where v is the speed at which the source and the observer move mutually away and c is the
speed of light. The fraction v/c is commonly denoted as β.

When we take the square and isolate β, we obtain

β = (λr/λ0)2 − 1
(λr/λ0)2 + 1 ,

which gives us the speed at which the rocket is receding from Lego’s space station v = 0.1c.
Let’s take a look at how the rocket will accelerate. Considering the acceleration up to v =

= 0.1c, we have to take relativistic equations into account for acceleration. To be precise,
the spatial component of the motion equation looks the same as the classical one F⃗ = dp⃗/dt,
except p⃗ = mv⃗, where v⃗ is a classical velocity relative to a certain inertial frame of reference.
However, the mass m is relative to this reference frame by m = m0γ, where m0 is the (already
given in the problem) rest mass and γ = 1/

√
1 − v2/c2 is the Lorentz factor.

We choose the frame of reference associated with the station at which Lego is aboard to
solve this problem. All distances, times, and speeds will be given in terms of this frame.

Now we can construct a differential equation for v and solve, but it is easier to realize that
the momentum at time t will simply be p(t) = Ft, which gives us the relation between t and β

Ft = m0
1√

1 − β2
v

Ft

m0c
=
√

β2

1 − β2(
Ft

m0c

)2
(1 − β2) = β2

β = Ft√
(m0c)2 + (Ft)2

.

When we substitute β calculated from the redshift, we get

Ft√
(m0c)2 + (Ft)2

= (λr/λ0)2 − 1
(λr/λ0)2 + 1 .

It is crucial to realize that it is not enough to plug in the time ts here since the light that
Lego sees on Wednesday departed the rocket earlier. Light moves at the speed c, so if the rocket
is at some point (from the perspective of the frame associated with Lego’s station) x away from
Lego, it will reach Lego in the time tc = x/c. That means Lego launched the rocket at the
time t = 0. After some time t = tr, it will gain such a speed that it will be seen as red by Lego.
But Lego will see it with a time delay tc. So for Lego to be able to see this given wavelength
at the time ts, it must hold that ts = tr + tc.

63



Physics Brawl Online 2023 13th year November 22, 2023

Firstly, we will express tr from the equation obtained by comparing β

1√(
m0c
F tr

)2 + 1
= (λr/λ0)2 − 1

(λr/λ0)2 + 1

1(
m0c
F tr

)2 + 1
=
(

(λr/λ0)2 − 1
(λr/λ0)2 + 1

)2

(
(λr/λ0)2 + 1
(λr/λ0)2 − 1

)2

− 1 =
(
m0c

F tr

)2

tr = m0c

F

(λr/λ0)2 − 1
2λr/λ0

.

Secondly, we calculate the distance traveled by the rocket at that time. We know its speed
at the time t, so we just need to integrate from 0 to tr

xr =
∫ tr

0

c√(
m0c
F t

)2 + 1
dt = c

[√
t2 +

(
m0c

F

)2
]tr

0

= c

(√
t2r +

(
m0c

F

)2
− m0c

F

)
.

Thus, the time for the light to return will be

tc = xr

c
=

√
t2r +

(
m0c

F

)2
− m0c

F
= m0c

F

(λr/λ0)2 + 1
2λr/λ0

− m0c

F
= m0c

F

(λr/λ0 − 1)2

2λr/λ0
.

And as we have said, ts = tr + tc must hold, which finally gives us the equation for F

ts = m0c

F

(λr/λ0)2 − 1
2λr/λ0

+ m0c

F

(λr/λ0 − 1)2

2λr/λ0
,

F = m0c

ts

(
(λr/λ0)2 − 1

2λr/λ0
+ (λr/λ0)2 − 2λr/λ0 + 1

2λr/λ0

)
,

F = m0c

ts
(λr/λ0 − 1) = 4 183 N .

Šimon Pajger
legolas@fykos.org

Problem 56 . . . pumping water using water 8 points
In the 19th century, people began to make extensive use of steam engines and to think about
their efficiency. One of the problems they could solve back then was pumping water out of the
mine. However, we are not interested in the specific design of a process/engine that pumps water
from a depth of h = 50 m to the surface. Consider that we have stumbled upon geothermally
heated ideal water (it is incompressible, has a constant density ρ and specific heat capacity c)
with volume V1 = 200 m3 and temperature T1 = 90 ◦C. Nearby is also a lake (thermal bath)
with constant temperature TJ = 10 ◦C. What is the maximum amount of water we can ideally
pump to the surface? For the whole amount of water, consider a constant elevation h and
a homogeneous gravitational field. Marek made an excursion to the 19th century.
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From the problem statement, we can see that it is a problem where we have a certain amount
of energy (geothermal water) available, which we want to convert into a certain amount of work
(pumping water from a mine). Whatever we do, we consider that the total energy is conserved.

We are interested in the maximum amount of water we can pump out and, therefore, the
maximum amount of work we can do. Let’s do things efficiently and consider the ideal case
where the geothermal energy is converted only into work and “waste” energy, which is received
by the lake (a thermal bath of constant temperature TJ). At this point, let us note that the lake
does have to accept a certain amount of heat/energy in this process, and thus, we cannot convert
geothermal energy purely into work (this would violate the second law of thermodynamics).
So, let’s write the law of conservation of energy

∆Qgeo + ∆QJ +W = 0 , (13)

where ∆Qgeo denotes the heat/energy change of the geothermal water, ∆QJ denotes the heat
the lake receives, and W is the work we are looking for. We see that the problem actually
reduces to finding and minimizing just the heat ∆QJ, since ∆Qgeo is given by

∆Qgeo = cV1ρ∆T = cV1ρ(TJ − T1) ,

where the temperature at the beginning is set, and the temperature at the end is the tempera-
ture of the lake itself. This is because we want maximum work, so we will cool the geothermal
water as long as we can efficiently (until the temperatures equilibrate, it would cost us work).

In the relation (13), we are left with two unknowns, so we need one more relation. And
that is the condition that the whole process must be reversible! We know from Carnot that
it is processes operating between two temperatures that are the most efficient – they can
extract the most work. The law of energy conservation and the condition of reversibility of the
whole process are at the heart of the so-called “Maximum work” theorem. The second law of
thermodynamics in the form

∆S ≥ 0 ,

respectively, for our process,
∆Sgeo + ∆SJ + ∆SW ≥ 0 . (14)

And since a bath, by definition (being much larger than a geothermally heated water source)
receives heat at a constant temperature, the entropy change is

∆SJ = ∆QJ

TJ
,

and we already know that we want to minimize ∆QJ. So we can see that we want to consider
equality in the equation (14) (which is easier to realize if we move the other terms without ∆QJ
to the right-hand side) if we are interested in maximizing the amount of work. Next, note
that ∆SW = 0 helps us minimize ∆QJ, meaning that we do the work reversibly/adiabatically.
Finally, we indeed get a condition on the reversible process when ∆S = 0

∆SJ = ∆QJ

TJ
= −∆Sgeo = −

∫
dQ
T

= −
∫ TJ

T1

cρV1
dT
T
,

from where we have
∆QJ = −cρV1TJ ln

(
TJ

T1

)
.
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For the work from (13), it holds

W = cρV1

[
T1 − TJ + TJ ln

(
TJ

T1

)]
,

knowing that when pumping water, we are doing work against the gravitational field W =
= ρ∆V gh and for the maximum amount of water Vmax we have

Vmax =
cV1
[
T1 − TJ + TJ ln

(
TJ
T1

)]
gh

.

This is for the values from the input Vmax = 16 277 m3. No matter what we do, no machine
pumps more water using geothermal water energy. However, this is a remarkably large amount
of water. Consider that to pump 16 277 m3 from a depth of 50 meters; we only need 200 m3 of
geothermally heated water and a bath. The reason for this is, of course, the high heat capacity
of the water. Finally, let us note that while this is a lot of water, it is still much less than we
might naively expect from V = cV1/gh = 136 481 m3.

Marek Jankola
marekj@fykos.org

Problem 57 . . . a beer problem 9 points
Drinking beer is not as simple as it seems. You must pick up your half-pint and tilt it so much
that it starts pouring into your mouth. For this, however, work must be done. Consider the
half-liter weight of m = 360 g, its cylindrical shape of radius r = 3.5 cm and height h = 15 cm
and density of beer ρ = 1 030 kg·m−3. Determine the work done if you lift a half-liter filled
with 350 ml of beer to drink. Your mouth is 40 cm above the table.

Jarda was thinking about how much he has to pay Viktor again. . .

To drink, we must do the work necessary to lift the tankard in a gravitational field, e.g. to
increase its potential energy. At first, we will calculate the angle of the tilt of a half-liter so
that a beer will start pouring out of it. The fluid will take shape consisting of a cylinder of
height x and a shape that gets created by an oblique cut from one end of the first base to the
other end of the other base. We will designate the height of this shape as y. Then, the overall
volume of these two bodies is equal to the volume of the beer in the glass V

V = πr2x+ 1
2πr

2y .

For the beer to pour out, a condition of x+ y = h must be fulfilled. The tilt angle can also be
expressed as tanα = y/2r, where α is the angle by which the height of the half-liter is diverted
from the vertical. From these three equations, we get the wanted angle as

tanα = πr
2h− V

πr3 ⇒ α = 59.3 ◦ .

At this angle arises a situation where there is enough beer in the tankard that its whole base is
still completely covered with beer. The situation would change at an angle of arctan(h/2r) =
= 65.0 ◦.
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From the relations before we can express numerically y = 2r tanα = 11.81 cm and x =
= 3.19 cm.

Next, we will find at what height above the base of an empty half-liter is the center of
mass. Since it is made out of a homogeneous material with a consistent width of walls, we can
designate the areal density of the walls and the base as σ. The center of mass of the base is
at a height of zero above the bottom, the center of mass of the walls is at a height of h/2, the
overall height of the center of mass of the half-liter is therefore

yk =
h
2 2πrhσ

2πrhσ + πr2σ
= h2

2h+ r
= 6.72 cm .

Calculating the center of mass of the space, which is taken by the beer, will be more difficult.
We get it from the knowledge of the location of the center of mass of the cylinder, which lies x/2
above the base, and from the location of the center of mass of the second part of the shape the
beer makes. We can calculate it using integration as

yy = 1
ρ
(

1
2πr

2y
) ∫ r

−r

2
√
r2 − u2 (u+ r) y

2r ρ (u+ r) y

4r du = 1
(πr3)

y

2r
5πr4

8 = 5y
16 = 3.69 cm .

We will get the height of the center of mass of the beer above the base simply as

yp = 1
V

(
x

2 πr
2x+

(5y
16 + x

) 1
2πr

2y
)

= 5.03 cm .

The center of mass of the beer, however, will not be on the axis of symmetry of the cylinder
but will be shifted in the direction closer to the ground. Analogically, we will calculate its
distance from the axis of symmetry. The center of mass of the cylindrical part is on the axis of
symmetry, and the center of mass of the other part is at a distance of

xy = 1
ρ
(

1
2πr

2y
) ∫ r

−r

2
√
r2 − u2 (u+ r) y

2r ρu du = 2
πr3

1
8πr

4 = 1
4r = 0.875 cm .

The center of mass of the beer is, therefore, shifted by

xp = 1
V

1
2πr

2y
1
4r = 0.568 cm

from the axis of symmetry of the half-liter.
Let us designate H = 40 cm as the height of the mouth above the table. The center of the

base will be located at a height of

vs = H − h cosα+ r sinα = 35.36 cm .

The center of mass of the half-liter itself is then higher by yk cosα. The center of mass of the
beer is higher by yp cosα − xp sinα. The potential energy of the tilted beer and the half-liter
is, relative to the ground,

E = g (m (vs + yk cosα) + V ρ (vs + yp cosα− xp sinα)) = 2.694 J .

From this value, it is necessary to subtract the potential energy of the center of mass of the
half-liter when it is sitting on the table. That is equal to

E0 = gm
h2

2h+ r
+ gV ρ

V

2πr2 = 0.398 J .
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Therefore, the result is a work of 2 296 mJ.

Jaroslav Herman
jardah@fykos.org

Problem K.1 . . . the pendulum swings back. . . 3 points
In certain buildings, one might encounter Foucault’s pendulum, which has a very long suspen-
sion. Jarda once encountered one, wanting to estimate the height of the ceiling from which
the pendulum was suspended. He measured the period of oscillation as 14.2 s, and when the
pendulum was in its lowest position, it was 70 cm above the floor. Determine the height of the
ceiling. Jarda has been in the Panthéon in Paris.

In this solution, we consider the pendulum to be a mathematical one. The well-known relation
that connects the length of the suspension L, gravity of Earth g and the period of oscillation
T is given by the formula:

T = 2π
√
L

g
⇒ L = T 2

4π2 g = 50.1 m .

In order to find the height of the point of suspension above the ground, it is neccessary to add
the lowest height of the pendulum above the floor h to the length of the suspension. This yields
the final result:

H = L+ h = T 2

4π2 g + h = 50.8 m .

Jaroslav Herman
jardah@fykos.org

Problem K.2 . . . . . . and forth. . . 3 points
To be able to use the approximation of a mathematical pendulum, we need a point of mass
on an massless suspension. Let’s consider a string made of steel with a diameter of 1.4 mm on
which a weight is suspended. For good accuracy, we require it to be 80 times more massive than
the string on which it is suspended. If the tensile strength of the used steel is 520 N·mm−2,
what can be the maximum length of the suspension at rest? The density of the used steel is
7 900 kg·m−3. Such a thin and long rope, and yet it would still hold Jarda.

The highest tension in the suspension will be at the point of suspension because it bears the
mass of the weight and also of the rest of the suspension. The mass of the suspension will be

mc = πd
2

4 ρL ,

where d is its diameter, ρ is the density of steel and L is its length. For the mass of the weight,
it applies mw = kmc, where k = 80.

The force acting on the suspension at the suspension point is

F = (mc +mw) g = mc (1 + k) g = πd
2

4 ρL (1 + k) g .
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If we divide this force by the cross-sectional area of the suspension, we get the stress in the
material. The suspension must not break, so the following holds

σ = F

S
= ρL (1 + k) g ⇒ L = σ

ρg (1 + k)
.= 83 m ,

where σ is the tensile strength.

Jaroslav Herman
jardah@fykos.org

Problem K.3 . . . . . . and back. . . 4 points
The horizontal displacement of a pendulum has lowered from 1.0 m to 0.9 m in ten minutes.
Determine the average work the resistance forces do during a single pendulum period. Again,
assume a mathematical pendulum with a 47 kg weight and a period of oscillation of 14.2 s.

Jirka thought the statement of this problem was confusing.
It is important that the period of the oscillation is not dependent on the displacement of the
pendulum. In time t = 10 min it has made

N = t

T
= 42.3 .

Oscillations. Further, we know that the length of the pendulum can be calculated from the
period of the oscillation as

L = T 2g

4π2 = 50.2 m .

The pendulum has lost some energy, which we will calculate from the difference of potential
energies. From the knowledge of the displacement x = L sinφ, where φ is the angle of deviation
from the vertical, we can calculate the decrease of potential energy of the pendulum as

∆E = mgL (cosφf − cosφi) .
We will designate index i as the initial angular displacement and index f as the final. Because
the initial angle holds the equation φi = arctan

(
xi
L

) .= 0.020 rad ≪ 1, we can with a good
precision use approximations tanφ ≈ sinφ ≈ φ a cosφ ≈ 1 − φ2

2 . Therefore, the difference of
the potential energies can be written as

∆E = mgL

2
(
φ2

i − φ2
f
)

= mg

2L
(
x2

i − x2
f
)
.

This energy is equal to the work made by the resistance forces. On average, the pendulum loses
during one period an energy

P = ∆E
N

=
mg
(
x2

i − x2
f
)
T

2Lt .

From the knowledge of the period of the oscillation, we will substitute for the length of the
suspension L = T 2g

4π2 , and we get

P = ∆E
N

= 2π2m
(
x2

i − x2
f
)

Tt

.= 21 mJ .

Jaroslav Herman
jardah@fykos.org
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Problem K.4 . . . . . . and forth, over and over again 5 points
The estimate did not seem accurate enough to Jarda, so he decided not to consider the pendulum
as a simple mathematical pendulum but went on to include the moments of inertia of its parts
in his calculations. He found that the suspension consisted of 50.0 m long string made from
steel with a diameter of 1.40 mm and that at the end of the suspension, there was a ball of
radius 10.0 cm with mass 17.0 kg. What is the ratio of the period of such a pendulum to the
period of a mathematical pendulum of length 50.1 m? The density of steel is 7.90 g·cm−3.

Jarda needed a physical pendulum problem also for this year’s Hurry-up.

We calculate the period using the formula for the physical pendulum, which is

T = 2π
√

J

mgx
,

where J is the moment of inertia of the body with respect to the rotational axis, m is its mass,
g is the gravitational acceleration, and x is the distance of the center of gravity of the body
from the rotational axis.

The mass of the string is md = ρV = ρ πd2

4 l, where the density of the steel is equal to
ρ = 7 900 kg·m−3. We denote the volume of the string as V and then express it in terms of
diameter d and length l. The distance of the center of gravity from the rotational axis is thus

x =
md

l
2 +M (l +R)
md +M

=
ρ πd2

8 l2 +M (l +R)
md +M

,

where M is the mass of the ball at the end and R is its radius.
The moment of inertia of the whole body can be obtained by summing the moments of

inertia of its individual parts. The suspension can be considered as a thin, rigid rod that
rotates around one of its ends, which corresponds to the moment of inertia

Jd = 1
3mdl

3 = 1
12ρπd

2l3 .

The moment of inertia of the ball with respect to the axis passing through its center of gravity
is 2

5MR2, but in this situation, we have to shift the axis by M (l +R)2 according to parallel
axis theorem, and we get the total moment of inertia of the whole pendulum as

J = 1
12ρπd

2l3 + 2
5MR2 +M (l +R)2 .

By plugging in the initial relation and comparing it with the period of a mathematical pendulum
of length (l +R) we get

T

Tmat
=
√

J

(md +M) (l +R)x =

√√√√√1 +
1

12 ρπd2l3+ 2
5 MR2

M(l+R)2

1 + ρ πd2
8 l2

M(l+R)

.= 0.997 .

The difference is so small that even for such a long period of oscillation, it would not be easy
to measure using a stopwatch.

Jaroslav Herman
jardah@fykos.org
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Problem T.1 . . . inflating a balloon 4 points
When we are inflating a balloon with a large enough radius, we can accurately assume the
balloon’s elastic potential energy to be proportional to its surface area. Jirka found such a
balloon with a radius of 5 cm and measured the air pressure inside it to be equal to 107 kPa.
However, the balloon was not very large, so he decided to inflate it to a radius of 15 cm. How
many moles of air did he need to blow into the balloon? Assume a spherical balloon surrounded
by room air with a temperature T = 20 ◦C. Optics tutorial was too boring for Jirka.

We want to use the ideal gas law to compute the amount of air we have to blow:

pV = nRT .

In this equation, we know the temperature T = 20 ◦C and the volume V2 = 4
3πr

3
2, where

r2 = 15 cm (spherical balloon). We have to relate the pressure inside the balloon to its size.
We already know that to increase the area of the balloon by dS (consider dS to be an

infinitesimally small area, although the relation would hold even for a finite ∆S), we must do
work dW against the balloon’s forces such that

dW = A

2 · dS .

where we denoted the proportionality constant A
2 on behalf of consistency with other problems

in this Hurry up series.
The balloon has a spherical shape, so the resultant force acts toward the center (the balloon

is trying to shrink). During an enlargement by some small radius dr, the work is done

dW = F · dr = p · S · dr = p · 4πr2 dr ,

where p is the pressure exerted by the balloon at the radius r. We took advantage of the fact
that dr is small, then during the increase of r by ∆r we can consider the force F and the area
S constant (i.e. we omit the terms O(dr2)). Similarly, we could proceed by reasoning that the
pressure in the balloon does the same work in inflating it as the pressure of the gas does in
expanding it. When the gas expands by a volume dV , it does work dW = p dV , where we also
have dW = p · 4πr2 dr.

We do know as well that the work is proportional to the area dS = 8πr2 dr and to sum up,
we can write

p · 4πr2 dr = A

2 · 8πr2 dr ,

where we find the dependance of the pressure on the radius

p = A

r
.

Please note that this is not yet the total pressure in the balloon. The air is also subjected to
the atmospheric pressure pa = 101 325 Pa. Finally, the total pressure is p+ pa.

Given the initial pressure p1 and the radius r1, we determine the constant A as A =
= (p1 − pa)r1. Then we obtain the number of moles of the air that Jirka must blow into the
balloon

∆n = p2V2

RT
− p1V1

RT
⇒ ∆n = 4π

3RT

[(
pa + (p1 − pa)r1

r2

)
r3

2 − p1r
3
1

]
.
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Substituting the numbers, we get ∆n = 0.576 mol, which translates to around 13 liters of air
at standard pressure. Humans are able to inhale approximately 3 liters of air, so Jirka needs
about 5 breaths to inflate the balloon.

Jiří Kohl
jiri.kohl@fykos.org

Problem T.2 . . . we are cooling down the balloon 5 points
Jirka was already satisfied with the size of his balloon and took it for a walk. He left the heated
room at 20 ◦C wearing only a T-shirt and found out that he was really cold because the outside
temperature was only 3 ◦C. What is the new radius of the balloon after it shrank during the
walk if it initially had a radius of r1 = 15 cm? Do not forget that in the previous problem,
you derived a relationship between the overpressure in the balloon and its radius (assuming the
balloon has a spherical shape)

∆p = A

r
,

where A = 300 Pa·m. Jirka attends secret night meetings.

We start from the equation of state for an ideal gas. Assuming that the air inside the balloon
does not escape during the walk, we have

p1V1

T1
= p2V2

T2
,

where T1 = 20 ◦C, T2 = 3 ◦C. The balloon is spherical, so its volume is

V = 4
3πr

3 .

The pressure of the air in the balloon is equal to the sum of the atmospheric pressure pa and
the overpressure in the balloon. Therefore, we have

p = pa + A

r
.

Now, we substitute all the information into the equation of state, and after some adjustments,
we get

T2

T1

(
pa + A

r1

)
r3

1 = Ar2
2 + par

3
2 .

Since it is a cubic equation, we will settle for a numerical solution. The only real root is r2
.=

.= 14.7 cm. Notice that in this case, the change in pressure in the balloon influences the result
very little. If we considered a constant pressure inside the balloon, we would obtain a result
that differs on the order of tenths of a percent. Therefore, we get

r2 = r1
3

√
T2

T1

.= 14.7 cm .

Jiří Kohl
jiri.kohl@fykos.org
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Problem T.3 . . . our balloon has flown away 6 points
Viktor had gifted Jirka a little present for his drive during proofreading – a helium balloon
with radius r0 = 11 cm. Jirka weighted down the balloon in a way that the total weight of
the material was M = 5.2 g and hoped that it was enough for the balloon not to fly away.
Unfortunately, he was mistaken, and the balloon started to rise. If we consider the same
dependency between the radius and the pressure inside the balloon as in the problems before,
i.e.

∆p = A

r
,

where A = 300 Pa·m, determine to what height the balloon will rise in an isothermic atmo-
sphere with a temperature T = 20 ◦C, provided that it won’t pop. The molar mass of helium
is 4.003 g·mol−1.
Hint: In an isothermic atmosphere both the pressure and the density decrease exponentially.

Actually, Jarda invited Jirka to have a beer.

An isothermic atmosphere has a constant temperature everywhere and for its pressure pa and
density ρa the following holds

pa = pa0 exp
(

− h

h0

)
, ρa = ρa0 exp

(
− h

h0

)
,

where pa0, ρa0 are the pressure and the density at the ground level and h0 = RT
gMa

= 8600 m
is the height (Ma = 28.96 g · mol−1) where both pressure and density decrease to 1/e of the
values at the ground level. Furthermore, the pressure and the density are in a relation

pa

ρa
= RT

Mm
,

where T is the temperature of the gas and Mm is its molar mass.
Another relation that will accompany us for the rest of the problem is the relation for

pressure pi of the helium inside the balloon

pi − pa = A

r
.

Under normal circumstances, we can determine the density of the helium simply as

ρHe0 = pa0MHe

RT
= 0.1664 kg·m−3 ,

where MHe = 4.003 g · mol−1 is the molar mass of helium. The density of the helium inside the
balloon will be somewhat greater because there is a pressure larger by A

r0
; therefore

ρHe = ρHe0
pa0 +A/r0

pa0
= 0.1709 kg·m−3 .

For the balloon to float at a certain height, its gravitational force has to be equal to its upthrust
force

mg = V ρag ⇒ m = 4
3πr

3ρa .

We know that at the ground level, the upthrust force was greater than the gravitational force,
which is why we have weighted the balloon down.
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We can find the weight of the balloon and the gas inside as

m = 4
3πr

3
0ρHe +M = 6.153 g .

The last important equation is the equation of state of an ideal gas in the balloon, according
to which

pi
4
3πr

3 = nRT .

From this equation, we will simply substitute in the equation for pressure and express the
atmospherical pressure depending on the radius as

3nRT
4πr3 − A

r
= pa0 exp

(
− h

h0

)
.

We plug the exponential into the balance of forces equation

exp
(

− h

h0

)
= ρa

ρa0
= m

4
3πr

3ρa0
,

and we get the equation for r in the form

m = 4
3πr

3 ρa0

pa0

(3nRT
4πr3 − A

r

)
⇒ r =

√
3

4πA

(
nRT − mpa0

ρa0

)
.

Because the temperature and the molar amount of helium in the ballon are constant, for the
product nRT , we can write

nRT = pi0
4
3πr

3
0 =

(
A

r0
+ pa0

) 4
3πr

3
0

and substitute it into the preceding equation.
Finally, we substitute the radius into the forces equation, and after some additional adjust-

ments and substitutions, we can express the height h as

h = h0 ln
(
ρa0

ρa

)
= h0 ln

(
4πr3ρa0

3m

)
= h0 ln


4π
(√

r2
0 + r3

0pa0
A

− 3mpa0
4πAρa0

)3

ρa0

3m

 .= 19 km .

Jaroslav Herman
jardah@fykos.org
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Problem T.4 . . . connecting balloons 6 points
Because Jirka’s helium balloon had flown away, he sadly had to ask Viktor for another one.
He got two, but he had to inflate them himself. Jirka inflated one to a radius of ri = 15.0 cm,
then took a short, narrow tube and connected it to the other so that no air escaped. To his
great surprise, once the balance was established, one balloon had a larger radius than the other.
What was the ratio of the radius of the larger balloon to the radius of the smaller one? Now,
suppose that the pressure difference between the balloon and the surrounding area depends on
its radius as

∆p = A

r

[
1 −

(
r0

r

)6
]
,

where A = 300 Pa·m and r0 = 3.00 cm. The experiment was conducted at a 20 ◦C. Assume the
second balloon has radius r0 before attaching it to the tube.

Jarda saw an interestig experiment at the lecture.

The situation stabilizes once the pressures between the balloons are equal while the total amount
of substance of gas in the system is preserved. Knowing the relationship for pressure as a
function of radius, we can use the equation of state to determine the amount of substance of
gas in the system as

n1 = 1
RT

p
4
3πr

3
i = 1

RT

{
A

ri

[
1 −

(
r0

ri

)6
]

+ pa

}
4
3πr

3
i
.= 0.599 mol ,

n2 = 1
RT

pa
4
3πr

3
0
.= 0.005 mol .

Let r1 denote the radius of the original of the connected balloons and r2 the radius of the
second. With equal pressures, the following holds

1
r1

[
1 −

(
r0

r1

)6
]

= 1
r2

[
1 −

(
r0

r2

)6
]
.

We can always use one radius from this equation to calculate the second radius.
At the same time, the equation of state for the whole system must be of the form

p
4π
3
(
r3

1 + r3
2
)

=
{
A

r1

[
1 −

(
r0

r1

)6
]

+ pa

}
4π
3
(
r3

1 + r3
2
)

= (n1 + n2)RT .= 1472.18 J ,

We know the value of the right-hand side of the equation; the only variable on the left-hand
side is r1. So we will vary r1 until we get the equality between the two sides to the desired
precision. For example, we can use software like Wolfram Mathematica or a suitable graphing
calculator like GeoGebra. We plot the dependence of the overpressure on the radius, place one
point on it, and find another point that has the same overpressure and is, therefore, at the
intersection of the overpressure curve with the parallel x axis, so we know r1 and r2. We find
that for the right side to equal nRT , we need r1 = 14.994 cm and r2 = 3.119 cm. Their ratio
and, therefore, the solution to our problem is 4.81.

Jaroslav Herman
jardah@fykos.org
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Problem M.1 . . . tram 3 points
What is the maximum angle at which a tram can travel downhill and still be able to stop? The
coefficient of shear friction of the wheels and rails is f = 0.15.

David rode to the lecture suspiciously downhill.

Suppose the tram is on an inclined plane at an angle α with the ground. In that case, three
forces act on it: the downward gravitational force F , the normal force N = F cosα, which is
perpendicular to the inclined plane, and the frictional force Ff acting against the direction of
motion. The maximum possible value of the friction force is

Ff, max = fN = fF cosα ,

where f = 0.15 is the coefficient of shear friction between the tram wheels and the rails. This
is also the maximum braking force the tram can exert.

In the downhill direction, the tangential component of the gravitational force

F∥ = F sinα ,

is trying to get the tram moving. The tram can only stop if its braking force is greater than
the accelerating tangential component of the gravitational force. We get an inequality between
these two forces

Ff, max > F∥

fF cosα > F sinα
tanα < f

α < arctan f
α < 8.53◦ .= 8.5◦.

The tram can only stop safely on slopes with an incline less than 8.5◦.

Jindřich Jelínek
jjelinek@fykos.org

Problem M.2 . . . the tram reloaded 3 points
The tram travels at v = 27 km·h−1 and its maximum deceleration is a = 2.1 m·s−2. What is
the minimum distance required for the tram to come to a complete stop upon Davis’s signaling
at the stop? The reaction time of the driver to the David’s wave is t′ = 0.3 s.

David studied the T3 tram manual for far too long

First, we will calculate the distance the tram travels before the driver reacts to David as

s1 = vt′ = 2.25 m .

We will then calculate how long it takes for the tram to stop

v = at ⇒ t = v

a

.= 3.57 s .

After that, we will determine the stopping distance using the well-known formula

s2 = vt− 1
2at

2 = 1
2at

2 .= 13.39 m.
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Finally, we will add the two distances together

s = s1 + s2
.= 16 m .

David Škrob
david.skrob@fykos.org

Problem M.3 . . . parallel tracks 4 points

d
r

r

rr ϕ

rr ϕ

A

B

Consider two parallel tram tracks at a distance of d = 11 m. We
want to build a system of arcs between them with a radius r,
as shown in the right image. Find r such that a tram, capable
of withstanding a centripetal acceleration of a = 0.85 m·s−2

in turn, passes through it in the shortest possible time. The
velocity of the tram remains constant.

Adam would like to ride the Snowpiercer.

Obviously, only r ≥ d/2 makes sense. Let’s choose any r
that satisfies this condition and calculate the total length of
the arcs s(r) and the maximum possible speed of the locomo-
tive v(r).

Speed is much simpler, so let’s start with it. Because a ≤ v2/r it holds

v =
√
ar .

To calculate the function s(r), let’s first determine the central angle corresponding to the middle
arc. For that, we have α = π + 2φ. Subsequently, we express distances A and B in two ways.
Using the large arc as

2r sin
(
π
2 + φ

)
= 2r cosφ

and using the small arcs as
d+ 2r(1 − cosφ).

We will compare these two expressions and obtain the relation φ = arccos [(d+ 2r)/4r]. Finally,
it is sufficient to add up the individual arcs and obtain

s(t) = πr + 4r arccos
(
d+ 2r

4r

)
.

From the known functions s(r) and v(r), we will express time as a function r

t(r) = s(r)
v(r) = π

√
r

a
+ 4
√
r

a
arccos

(
d+ 2r

4r

)
≤ π
√
r

a
.

Function f(r) = π
√
r/a is increasing, and the tram will pass through the arc fastest when

r = d/2 = 5.5 m.
Note: In fact, it was not necessary to express the angle φ (it is sufficient that it is non-negative),
but it is an interesting geometric problem.

Adam Mendl
adam.mendl@fykos.org
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Problem M.4 . . . turboflies’ troubles 5 points
Two trams at a distance of s = 400 m are moving against each other, first with a velocity of
v1 = 30 km·h−1, second with a velocity of v2 = 35 km·h−1. From the first one, a fly takes
off with a velocity of v3 = 80 km·h−1 and flies to the other tram, where it bounces off the
windshield, flies back, and so on, as long as it manages to outfly the trams. The windshields
are sticky, so with each bounce, its speed gets lowered to a q-factor of the velocity before the
bounce, where q = 0.97. Assuming the bounce is instantaneous, what distance does the fly
cover before the trams collide? Marek has seen a fly in a tram.

After time t since the moment the fly takes off, the trams are at a distance of s − (v1 + v2)t.
We will define the time of the i-th collision with the trams as ti (and assign t0 = 0 s). Next,
we will designate v1 = 30 km·h−1 as the velocity of the first tram and v2 as the velocity of the
second one, while the initial velocity of the fly will be designated as v3. Then, we can write for
even and odd collisions:

s− (v1 + v2)t2n =
(
v2 + v3 · q2n

)
(t2n+1 − t2n) ,

s− (v1 + v2)t2n+1 =
(
v1 + v3 · q2n+1) (t2n+2 − t2n+1) ,

because the fly and the oncoming tram have to cover the distance between the trams in the
same time. Upon rearranging, we get iterative relations

t2n+1 =
s−
(
v1 − v3 · q2n

)
t2n

v2 + v3 · q2n
,

t2n+2 =
s−
(
v2 − v3 · q2n+1) t2n+1

v1 + v3 · q2n+1 .

We can notice that if the fly did not slow down, a formally infinite number of collisions with
the trams would happen. However, the fly is slowing down, thus its velocity will be smaller
at one point than the velocity of one of the trams, and it will only ride the windshield. This
happens for least such k that one of the following inequalities will hold

v3q
2k ≤ v1 , v3q

2k+1 ≤ v2 .

This allows us to determine the number of collisions with trams N as 2k if the first inequality
holds or as 2k+ 1 if the second inequality is met. k can be determined using, for example, any
spreadsheet, such as Excel. Once we determine it, we will calculate the total path of the fly as

s =
N∑

n=1

v3q
n−1(tn − tn−1) ,

We could have observed that after about the tenth bounce, the trams are so close that the
covered distances don’t change significantly, so performing a summation until index N = 10
would be sufficient.

Vojtěch David
vojtech.david@fykos.org
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